Antiviral Therapy

Scott M. Hammer, M.D.

Challenges to the Development of Effective Antiviral Agents

• Myriad number of agents
• Need knowledge of replication at molecular level to define targets
 – Viruses as intracellular parasites make targeting more difficult to avoid host toxicity
• Lack of culture systems for some agents hinders development
• High through-put screening plus ‘rational’ drug design are both labor intensive and expensive
Challenges to the Development of Effective Antiviral Agents

• Pathogenesis of certain agents makes therapy a challenge even in the face of defined targets

• Clinical presentation of acute viral infections may be at peak of viral replication in vivo
 – May have a small window to intervene effectively
 – Need rapid diagnostic procedures

Diagnosis of Viral Infections

• Clinical suspicion
 – Is syndrome diagnostic of a specific entity?
 – Is viral disease in the differential diagnosis of a presenting syndrome?

• Knowledge of appropriate specimen(s) to send
 – Blood
 – Body fluids
 – Lesion scraping
 – Tissue
 – Proper transport is essential
Progress in Antiviral Therapy

<table>
<thead>
<tr>
<th>Virus Family</th>
<th>Antiviral Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpesviruses (HSV, VZV, CMV)</td>
<td>Acyclovir, famciclovir, valacyclovir, ganciclovir, cidofovir, formivirsen, valganciclovir</td>
</tr>
<tr>
<td>HIV-1</td>
<td>25 approved agents</td>
</tr>
<tr>
<td>Influenza</td>
<td>Amantadine, rimantadine, zanamivir, oseltamivir</td>
</tr>
<tr>
<td>Resp. syncytial virus</td>
<td>Ribavirin</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>3TC, FTC, adefovir, tenofovir, entecavir, telbivudine</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>pegIFN-ribavirin</td>
</tr>
<tr>
<td>Papillomaviruses</td>
<td>IFN, ?cidofovir</td>
</tr>
<tr>
<td>Poxviruses</td>
<td>?Cidofovir</td>
</tr>
<tr>
<td>JC virus</td>
<td>?Cidofovir</td>
</tr>
</tbody>
</table>
Non-HIV Antiviral Therapy: Targets

- Herpesviruses
- Respiratory viruses
- Hepatitis viruses
- Others

Anti-Herpesvirus Agents

- Acyclovir
- Valacyclovir
- Famiciclovir
- Ganciclovir
- Valganciclovir
- Foscarnet
- Cidofovir
- Formivirsen
- Trifluridine
- Idoxuridine
Anti-Herpesvirus Agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
<th>Active Moiety</th>
<th>Target Agents</th>
<th>Route of Admin</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir</td>
<td>Acyclic nucleoside</td>
<td>Tri-phosphate</td>
<td>HSV, VZV</td>
<td>Oral, intravenous, topical</td>
<td>Renal, Neuro</td>
</tr>
<tr>
<td>Val-ACV</td>
<td>Ester prodrug of acyclovir</td>
<td>Tri-phosphate</td>
<td>HSV, VZV</td>
<td>Oral</td>
<td>Renal, Neuro</td>
</tr>
<tr>
<td>Penciclovir</td>
<td>Acyclic nucleoside</td>
<td>Tri-phosphate</td>
<td>HSV</td>
<td>Topical</td>
<td>Local irritation</td>
</tr>
<tr>
<td>Famciclovir</td>
<td>Ester prodrug of penciclovir</td>
<td>Tri-phosphate</td>
<td>HSV, VZV</td>
<td>Oral</td>
<td>Headache, nausea</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td>Acyclic nucleoside</td>
<td>Tri-phosphate</td>
<td>CMV, HSV, VZV</td>
<td>Intravenous, oral, intraocular</td>
<td>Hematologic</td>
</tr>
<tr>
<td>Val-GCV</td>
<td>Ester prodrug of ganciclovir</td>
<td>Tri-phosphate</td>
<td>CMV</td>
<td>Oral</td>
<td>Hematologic</td>
</tr>
</tbody>
</table>

Anti-Herpesvirus Agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
<th>Active Moiety</th>
<th>Target Agents</th>
<th>Route of Admin</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foscarnet</td>
<td>Pyrophosphate analog</td>
<td>Parent drug active</td>
<td>CMV, HSV</td>
<td>Intravenous</td>
<td>Renal, metabolic</td>
</tr>
<tr>
<td>Cidofovir</td>
<td>Nucleotide analog</td>
<td>Di-phosphate</td>
<td>CMV, HSV, HPV, pox</td>
<td>Intravenous</td>
<td>Renal, ocular</td>
</tr>
<tr>
<td>Formiviren</td>
<td>Antisense oligo-NT: binds to CMV mRNA</td>
<td>Parent drug active</td>
<td>CMV</td>
<td>Intraocular</td>
<td>Ocular</td>
</tr>
<tr>
<td>Trifuridine</td>
<td>Nucleoside analog</td>
<td>Tri-phosphate</td>
<td>HSV keratitis</td>
<td>Topical</td>
<td>Ocular</td>
</tr>
<tr>
<td>Idoxuridine</td>
<td>Nucleoside analog</td>
<td>Tri-phosphate</td>
<td>HSV keratitis</td>
<td>Topical</td>
<td>Ocular</td>
</tr>
</tbody>
</table>
Anti-Herpesvirus Agents

Figure 11-1. Chemical structures of antiherpesviral agents.
Acyclovir I

- Development represents a watershed in the field of antiviral chemotherapy
- Acyclic guanosine analog
- Active vs. HSV, VZV and modestly CMV
- Mechanism of action
 - Preferentially taken up by virally infected cells
 - Monophosphorylated by virally encoded thymidine kinases
 - Di- and triphosphorylation completed by cellular kinases
 - ACV-TP is the active moiety
 • Competitive inhibitor of viral DNA polymerase
 - Cellular DNA polymerases much less susceptible to inhibition
 • Leads to viral DNA chain termination

Acyclovir: Mechanism of Action
Acyclovir II

- **Pharmacology**
 - Administered by oral, intravenous and topical routes
 - Oral bioavailability 15-30%
 - $T_{1/2}$ 3 hrs
 - Primarily renally excreted

- **Toxicities**
 - Headache, nausea
 - Renal
 - Neurologic

- **Resistance**
 - Mediated by mutations in viral thymidine kinase and/or viral DNA polymerase genes
 - TK-deficient and TK altered virus can be produced
 - Clinically significant infections can be caused by drug resistant HSV and VZV

Anti-Respiratory Virus Agents

- Amantadine
- Rimantadine
- Zanamivir
- Oseltamivir
- Ribavirin
Amantadine and Rimantadine

- Tricyclic amines
- Active vs. influenza A only at clinically achievable concentrations
- Mechanism of action
 - Interference with function of viral M2 protein
 - M2 protein acts as an ion channel facilitating the hydrogen ion mediated dissociation of the matrix protein from the nucleocapsid
- Pharmacology:
 - Orally bioavailable
 - Amantadine: renal excretion
 - Rimantadine: hepatic metabolism and renal excretion
- Major toxicity
 - Neurotoxicity: amantadine > rimantadine
- Useful for treatment and prophylaxis of influenza A infections
 - Should not be used when amantadine resistant strains are in circulation
- Resistance mediated by mutations in M2 coding region

![Chemical structures of amantadine and rimantadine.](image)
Influenza Virus Replication Cycle

From Fields Virology

Uncoating of Influenza Virus

From Fields Virology
Zanamivir and Oseltamivir I

• Active vs. influenza A and B

• Mechanism of action
 – Viral neuraminidase catalyzes cleavage of terminal sialic acid residues attached to glycoproteins and glycolipids, a process necessary for release of virus from host cell surfaces
 – Neuraminidase inhibitors thus prevent release of virions from infected cell

Mechanism of Action of Neuraminidase Inhibitors

Zanamivir and Oseltamivir II

• Pharmacology
 – Zanamivir
 • Oral inhalation
 – Oseltamivir
 • Orally bioavailable
 • Converted from ester prodrug to active form
 • Renally excreted

• Toxicities
 – Exacerbation of reactive airway disease by zanamivir
 – Nausea and vomiting for oseltamivir
Zanamivir and Oseltamivir IV

• Indications
 – Treatment of influenza A and B within 24-48 hrs of symptom onset
 – Prophylaxis
 – N.B.: Neither drug interferes with antibody response to influenza vaccination

• Resistance
 – Incidence appears to be increasing
 – Ongoing surveillance necessary

Ribavirin I

• Synthetic nucleoside analog
• Active vs. broad range of RNA and DNA viruses
 – Flavi-, paramyxov-, bunyav-, arena-, retro-, herpes-, adeno-, and poxviruses
• Mechanism of action complex
 – Triphosphorylated by host cell enzymes
 • For influenza
 – Ribavirin-TP interferes with capping and elongation of mRNA and may inhibit viral RNA polymerase
 • For other agents
 – Ribavirin-MP inhibits inosine-5′-monophosphate dehydrogenase, depleting intracellular nucleotide pools, particularly GTP
Ribavirin II

- **Pharmacology**
 - Aerosol and oral administration
 - Hepatically metabolized and renally excreted

- **Major toxicity**
 - Anemia

- **Indications**
 - Aerosol treatment of RSV in children
 - Effectiveness debated
 - Oral treatment of HCV (in combination with pegylated IFN-alpha)

Anti-Hepatitis B Virus Agents

- Interferon-alpha (pegylated)
- Lamivudine (3TC)
 - Nucleoside analog first developed for HIV
 - Lower dose used for HBV (100 mg/day)
- Emtricitabine (FTC)
 - Anti-HIV nucleoside analog with strong anti-HBV activity
- Adefovir dipivoxil
 - Nucleotide analog first developed for HIV but nephrotoxic at higher doses
 - Approved for HBV at lower dose (10 mg/day)
- Entecavir
 - Nucleoside analog with activity originally thought limited to HBV
 - Recent reports indicate entecavir also has anti-HIV-1 activity
 - Can induce resistance in HIV-1
 - Approved for use at dose of 0.5-1.0 mg/day
- Telbivudine
 - Nucleoside (thymidine) analog with activity vs. HBV but not HIV
 - Approved for use at a dose of 600 mg/day
Anti-Hepatitis C Virus Agents

- **Approved**
 - Interferon-alpha (pegylated)
 - Ribavirin

- **In development**
 - Protease inhibitors
 - Polymerase inhibitors

Interferons I

- Part of cytokine repertoire
- Possess antiviral, immunomodulatory and antiproliferative effects

- Types
 - Alpha/Beta (leukocyte/fibroblast)
 - Coding genes located on chromosome 9
 - At least 24 subtypes of alpha, 1 of beta
 - Gamma
 - Coding gene located on chromosome 12
 - 1 subtype
Interferons II: Mechanism of Action

- Act by inducing an antiviral state within cells
- Bind to specific receptors on cell surface
- Receptor associated tyrosine kinases activated
 - Tyk2 and JAK 1 for alpha and beta
 - JAK1 and JAK2 for gamma
- Cytoplasmic proteins [signal transducers and activators of transcription (STAT)] phosphorylated
 - Move to nucleus and bind to cis-acting elements in promoter regions of IFN inducible genes
Interferons III: Mechanisms of Action

- Synthesis of 2'-5' oligoadenylate synthetase
 - Activated by dsRNA
 - Convert ATP into a series of 2'-5' oligo(A)s
 - These activate RNAase L which cleaves single stranded mRNAs
- Synthesis of dsRNA-dependent protein kinase (PKR, eIF-2 kinase)
 - PKR activated by dsRNA and autophosphorylated
 - In turn, phosphorylates alpha subunit of eukaryotic initiation factor 2
 - Protein synthesis inhibited
- Induction of a phosphodiesterase with inhibition of peptide chain elongation
- Synthesis of MxA protein which can bind to cytoskeletal proteins and inhibit viral transcriptases
- Induction of nitric oxide by gamma IFN in macrophages

Interferons IV

- Pharmacology
 - Injected IM or SC
 - Renal excretion and inactivation in body fluids/tissues
- Toxicities
 - Flu-like symptoms
 - Hematologic effects
 - Leukopenia and thrombocytopenia
 - Neuropsychiatric effects
- Antiviral indications
 - IFN-alpha (pegylated) SC for HCV (in combination with ribavirin)
 - Intralesional for condyloma acuminata
- Resistance can develop
 - Mutations in NS5A gene of HCV described
Passive Immunization for Viral Infections I

- Human immune globulin
 - Prevention of hepatitis A
 - Prophylaxis and treatment of enterovirus infections in neonates and in children with antibody deficiency
 - Treatment of B19 parvovirus infection in immunodeficient individuals
- CMV immune globulin
 - Prophylaxis of CMV in solid organ transplant recipients
 - Treatment of CMV pneumonia in combination with ganciclovir
- Hepatitis B immune globulin
- Rabies immune globulin
 - Post-exposure prophylaxis for rabies (in combination with rabies vaccine)

Passive Immunization for Viral Infections II

- Respiratory syncytial virus immune globulin
 - Prevention of complications of RSV infection in young children
- Palivizumab
 - Humanized RSV monoclonal antibody
 - Prevention of complications of RSV infection in young children
- Varicella-zoster immune globulin
 - Prevention of varicella infection in immunocompromised children and adults within 96 hours of exposure
- Vaccinia immune globulin
 - Available from CDC for complications of smallpox (vaccinia) vaccination
Conclusions

• Field of antiviral therapy has matured dramatically in past 30+ years
• Greatest progress made for
 – Herpesviruses
 – HIV
 – Respiratory viruses
 – Hepatitis viruses
• Preventive vaccination remains the key to global control of viral infections