Infectious Diarrheal Diseases

Michael Yin, MD MS

Outline

- Epidemiology
- Pathogenic Mechanisms
- Host Defenses
- Representative Organisms
 - Non-inflammatory diarrhea
 - Inflammatory diarrhea
 - Enteric Fever
- Approach to the Patient

Epidemiology

- Major cause of morbidity and mortality in children developing world
 - Attack rate: 10-18 illnesses per child per year
 - Food-borne diarrheal disease in U.S.
 - 76 million illnesses per year
 - 350,000 hospitalizations
 - 5,000 deaths
 - Waterborne outbreaks

Epidemiology

- Overall burden not well studied in developed world
 - Attack rate: 1-3 illnesses per child per year

Epidemiology

- Most cases of acute infectious diarrhea are caused by viruses
- Bacterial pathogens isolated in 1-6% of cases
- Limitation of hospital based survey:
 - 22% examined
 - 5% submitted stool

Epidemiology

- Water/Foodborne
 - Campylobacter
 - Salmonella (nontyphi)
 - Enterohemorrhagic E. coli (EHEC) and Enterotoxigenic E. coli (ETEC)
 - Vibrio
 - Yersinia
 - Clostridium perfringens
 - Bacillus cereus
 - Staphylococcus aureus

Bacterial Pathogens

- Person-to-person
 - Shigella
 - Salmonella typhi
Pathogenic Mechanisms

- Inoculum size
- Adherence
- Toxin Production
 - Enterotoxin
 - Cytotoxin
 - Neurotoxin
- Tissue invasiveness

Pathogenic Mechanisms

- Cholera Toxin (enterotoxin)
 - Composition of Toxin
 - A subunit (enzymatic activity)
 - B subunit (binds to enterocyte surface receptor, the ganglioside G\textsubscript{M1})
 - After binding to enterocyte, A subunit
 - translocated across cell membrane
 - catalyzes ADP ribosylation of a GTP-binding protein resulting in persistent activation of adenylate cyclase

Pathogenic Mechanisms

- Inoculum size
 - 10-100 organisms
 - Shigella
 - <1000 organisms
 - Enterohemorrhagic E. coli (EHEC)
 - Salmonella typhi
 - Campylobacter jejuni
 - 10^5 to 10^8 organisms
 - Vibrio cholera
 - Salmonella (nontyphoidal)

Pathogenic Mechanisms

- Toxin Production
 - Enterotoxin: cause watery diarrhea by acting directly on secretory mechanisms in the intestinal mucosa
 - Vibrio cholera, ETEC, Clostridium perfringens
 - Cytotoxin: cause destruction of mucosal cells and associated with inflammatory diarrhea
 - Shigella, Shiga-like toxin or verotoxin (EHEC)
 - Neurotoxin: act directly on central or peripheral nervous system
 - Staphylococcus aureus, Bacillus cereus

Pathogenic Mechanisms

- Shiga Toxin (cytotoxin)
 - Produced by S. dysenteriae
 - B subunit binds to host cell glycolipid (Gb3) and facilitates transfer of A subunit
 - A subunit disrupts protein synthesis by preventing binding of aminoacyl-transfer RNA to the 60S ribosomal subunit
 - Results in destruction of intestinal cells and villi, decreasing intestinal absorption
Pathogenic Mechanisms
• Staphylococcus Aureus enterotoxin (neurotoxin)
 – Heat-stable toxin
 – Increases peristalsis by autonomic activation, resulting in intense vomiting
• Bacillus Cereus enterotoxin
 – Two enterotoxins
 • Emetic: incubation period 1-6 hours
 • Diarrheal: Incubation period 10-12 hours

Pathogenic Mechanisms
• Tissue Invasion
 – Salmonella Pathogenicity Island-1 and 2 (SPI-1 & SPI-2)
 • Binds to microfold cells (M cell) or enterocytes
 • Introduces salmonella-secreted invasion proteins (Sips or Ssps) into M cells resulting in membrane ruffling and phagocytosis
 • Replicates in phagosome (tolerant to acids)
 • Spreads to adjacent epithelial cells and lymphoid tissue.

Host Defenses
• Normal Flora
 – Anaerobes: acidic pH & fatty acid production prevent colonization by bacterial pathogens
• Gastric Acid
 – Increased frequency of Salmonella among patients with gastric bypass
• Intestinal Motility
 – Impaired motility allows for bacterial overgrowth
• Immunity
 – Secretory IgA, systemic IgG and IgM
 – Cell-mediated immunity
 • Binding of bacterial antigens to the luminal side of M cells in distal small intestines, subsequent presentation of antigen to subepithelial lymphoid tissue

Microbiology of Infectious Diarrheas
• Aerobic Gram-neg Rods
 – Enterobacteriaceae
 • Escherichia
 • Salmonella
 • Shigella
 • Yersinia
 – Vibrionaceae
 • Vibrio
 – Campylobacteriaceae
 • Campylobacter
• Gram-pos Rods
 – Bacillus
 – Clostridium

Clinical approach to Infectious Diarrheas

<table>
<thead>
<tr>
<th>Location</th>
<th>Watery Diarrhea</th>
<th>Bloody diarrhea (Dysentery)</th>
<th>Enteric Fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Non inflammatory (enterotoxin)</td>
<td>Inflammatory (invasion or cytotoxin)</td>
<td>Penetrating systemic infection</td>
</tr>
<tr>
<td>Pathogens</td>
<td>Vibrio cholera</td>
<td>ETEC</td>
<td>Clostridium Perfringens</td>
</tr>
</tbody>
</table>

A case of watery diarrhea
• 1 year old boy with abrupt onset of watery diarrhea and vomiting
• No fever, no bloody stool
• Development of sunken eyes, dry mouth, inability to feed, lack of urination
• Lethargic, unresponsive, death
• Father also with watery diarrhea (1 liter/hour), vomiting, cramps
Vibrio Cholera

- **Microbiology**
 - Identified by Filippo Pacini in 1854 and Robert Koch in 1883
 - Curved gram negative bacillus with single polar flagellum
 - Over 200 serogroups, but only O1 and O139 somatic antigens are associated with epidemic and pandemic cholera
 - Non-O1 or non-O139 can be pathogenic and cause small outbreaks
 - Pathogenesis related to acquisition of the vibrio pathogenicity island (VPI) and bacteriophage (CTXΦ) which can be transmitted laterally between strains

- **Epidemiology**
 - Lives in aquatic environments attached to algae or crustacean shells
 - Multiplies when temperature, salinity, and nutrients are suitable
 - Both an endemic and epidemic pattern
 - Endemic in South Asia, especially in Ganges Delta
 - Seven pandemics since 1817
 - Transmission through contaminated food and water, person-to-person transmission is unusual

- **Clinical**
 - Variable
 - 75% Asymptomatic
 - 20% Abrupt watery diarrhea
 - 5% Severe watery diarrhea, vomiting, and dehydration
 - No tenesmus, strain or abdominal pain, or fever
 - Dehydration
 - Duration 1-3 days

- **Treatment**
 - Rehydration: IV followed by Oral Rehydration Solution (glucose and electrolytes)
 - Doxycycline

The 7th Cholera Pandemic (O1 biotype EL Tor) 1961-1971

- 22 cases of Vibrio illness
- 5 deaths
- V. vulnificus
- V. parahaemolyticus
- Non-O1 Non-O139
- V. cholera

Vibrio cholera

- Sulaymaniyah, Iraq
 - 3,182 cases of acute watery diarrhea, 9 deaths (CFR 0.3%) from 7/29-9/6/07
 - 283 confirmed cases of Vibrio cholerae from stool specimens
- Kirkuk, Iraq
 - 3,728 cases of acute watery diarrhea, 1 death (CFR 0.03%)
A case of bloody diarrhea

• 4 yr old boy who goes to daycare
• 2 hour history of vomiting, diarrhea, fever, irritability and lethargy
• Physical exam
 – Fever
 – Tachycardia
 – Tachypnea
 – Mild dehydration

Shigella

• Pathogenesis
 – Low inoculum (<200 organisms)
 • Person-to-person spread, secondary cases common
 – Invasion of intestinal mucosa, moving from small to large intestines, with multiplication and mucosal destruction
 – Cytotoxin elaboration
 – Penetration beyond mucosa is rare

A case of bloody diarrhea

• Laboratory findings
 – Leukocytosis (WBC=13,200, 85% neutrophils)
 – negative blood cultures
 – Stool examination reveals fecal leukocytes, no ova and parasites

Shigella

• Clinical manifestations
 – 12 hours after ingestion, bacterial multiplication begins in the small intestines resulting in abdominal pain, cramping, watery diarrhea and fever
 – Resolution of fever in a few days
 – Onset of severe lower abdomen pain, accompanied by urgency, tenesmus, and bloody mucoid stools (dysentery)
 – Illness lasts for average of 7 days
 – Colonic shedding for 1-4 weeks
 – S. dysenteriae results in more serious diarrhea with risk of Hemolytic Uremic Syndrome (HUS)

Shigella

• Microbiology
 – Small gram negative rod, member of Enterobacteriaceae, tribe Escherichiae
 – 40 serotypes. Shigella sonnei (40-80% cases in U.S.), S. dysenteriae, S. flexneri, S. boydii
 – S. dysenteriae 1 produces Shiga toxin

E. coli

• Enterotoxigenic (ETEC): traveler’s diarrhea
• Enteroadherent (EAEC): traveler’s diarrhea and persistent diarrhea in children
• Enteropathogenic (EPEC): children’s diarrhea, nursery outbreaks
• Enterohemorrhagic (EHEC or STEC): hemorrhagic colitis, associated with HUS in children
• Enteroinvasive (EIEC): shigella-like dysentery
E. Coli O157:H7 epidemics

- 1982: ground beef
- 1990: drinking water
- 1991: apple cider
- 1992: hamburger
 - 28 illnesses in 6 states, 5 cases of HUS
 - PFGE analysis links isolates from 18 patients to ground beef from ConAgra
 - ConAgra recalls 18.6 million lbs of beef
- 2006: spinach
 - 173 illnesses in 25 states, 28 cases of HUS, 92 hospitalizations and 1 death
 - Spinach implicated grown in Monterey, San Benito and Santa Clara, CA
 - Recalls by Pacific Coast Fruit Company, Triple B Corporation, S.T. Produce, RLB Food Distributors, and Natural Food Selection Foods

Hemolytic Uremic Syndrome

- Hemolytic anemia with fragmented erythrocytes
- Thrombocytopenia
- Acute renal injury

A case of Enteric Fever

- A 23 year old P&S student develops persistent fevers 2 weeks after returning from Mexico
 - Associated with headache, malaise and anorexia
 - Missed student health appointment prior to departure
 - Had self limited diarrhea while in Mexico
- Physical examination
 - Splenomegaly
 - Salmon pink rash
- Laboratory data
 - Leukopenia
 - Blood culture: gram negative rod

Course of EHEC in children

<table>
<thead>
<tr>
<th>Days</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>2</td>
<td>Fever</td>
</tr>
<tr>
<td>3</td>
<td>Blood culture positive</td>
</tr>
<tr>
<td>4</td>
<td>Diarrhea improves</td>
</tr>
</tbody>
</table>

MID 12
Salmonella

- **Microbiology**
 - Gram negative, facultative anaerobic rod
 - More than 2500 serotypes
 - *S. typhi* and *S. paratyphi*
 - Nontyphoidal Salmonella (*S. enteritidis, S. typhimurium, S. virchow, S. dublin, S. cholerasuis et al.)*
- **Epidemiology**
 - *S. typhi* and *S. paratyphi* are strict human pathogens
 - Nontyphoidal salmonella colonizes virtually all animals; therefore, causes infection through contaminated food
 - Up to 0.1% of eggs contain *S. enteritidis*

Salmonella

- **Pathogenesis**
 - Ingested Salmonella induce endocytosis by M cells and enterocytes in small intestines
 - Organisms replicate within phagosomes
 - Transcytose to basolateral surface and interact with macrophages and lymphocytes in Peyer’s patch
 - Recruitment of additional mononuclear cells and lymphocytes resulting in mucosal necrosis
 - Spread systemically to bone marrow, liver, spleen within macrophages
 - Risk of invasive salmonellosis greater in patients with impaired cell-mediated immunity (AIDS, transplant)

Salmonella

- **Clinical Manifestations of *S. typhi* and *S. paratyphi***
 - Enteric Fever
 - Fever begins 5-21 days after ingestion and persists 4-8 weeks in untreated patients
 - Rose spots (30%), hepatosplenomegaly (50%)
 - Most symptoms resolved by fourth week
 - Complications: death in 1-30%; intestinal perforation, abscesses, endocarditis; relapse in 10%.
 - Asymptomatic carriage
 - 1-4%

Who is this woman?

Typhoid Mary

- 1900-1907: Mary Mallon linked to 7 family epidemics
- 1907-1910: confined to Willard Parker Hospital
- 1915: A devastating outbreak linked to Mary
- Confined to North Brother Island until death in 1938

Salmonella

- **Gastroenteritis**
 - Nausea, vomiting, diarrhea 6-48 hours after ingestion
 - Fever, abdominal cramping
 - Self limited (3-7 days)
- **Bacteremia**
 - Occurs more rapidly than Typhoid and lacks typical rose spots and leukopenia
 - Often in AIDS patients
- **Tissue invasion/localized infections**
 - Arterial infections, cholecystitis, osteomyelitis, septic arthritis
Approach to the patient with acute diarrhea

Approach to patient

• History
 – Epidemiological features
 • Travel to developing area
 • Consumption of unsafe foods (raw foods, unpasteurized dairy) or water
 • Illness in others with common food source
 • Sick contacts (kids in daycare, co-workers)
 • Oral-anal sexual contact
 • Recent antibiotics or hospitalization
 • Underlying medical conditions (AIDS, transplant, gastric bypass)

• Onset (abrupt, gradual) and duration
• Stool characteristics (watery, bloody, mucous) and frequency
• Associated symptoms (fever, tenesmus, nausea, vomiting, abdominal pain, rash)
• Systemic symptoms (thirst, tachycardia, orthostasis, decreased urination, lethargy, altered sensorium)

Approach to patient

• Stool evaluations (especially if bloody stool, and clinically severe)
 – Fecal leukocytes
 – Bacterial culture
 – Toxin
 • Clostridium difficile toxin
 • Shiga toxin
 • Shiga-like toxin (EHEC)
 – Ova and parasites

Treatment

• Rehydration
• Antibiotics
 – Traveller’s Diarrhea (ETEC)
 – Moderately-severe invasive disease (shigella, campylobacter, salmonella)
 – Avoid antibiotics for EHEC