Infectious Diarrheal Diseases

Michael Yin, MD MS

Outline

• Epidemiology
• Pathogenic Mechanisms
• Host Defenses
• Representative Organisms
 – Non-inflammatory diarrhea
 – Inflammatory diarrhea
 – Enteric Fever
• Approach to the Patient
Epidemiology

• Major cause of morbidity and mortality in children developing world
 – Attack rate: 10-18 illnesses per child per year
 – In Asia, Africa, Latin America there are approximately 1 billion cases/yr resulting in 4-6 million deaths per year (12,600 deaths/day)
 – In some areas >50% of childhood deaths are attributable to acute diarrheal illnesses

Epidemiology

• Overall burden not well studied in developed world
 – Attack rate: 1-3 illnesses per child per year
 – Food-borne diarrheal disease in U.S.
 • 76 million illnesses per year
 • 350,000 hospitalizations
 • 5,000 deaths
 – Waterborne outbreaks
Epidemiology

- Most cases of acute infectious diarrhea are caused by viruses
- Bacterial pathogens isolated in 1-6% of cases
- Limitation of hospital based survey:
 - 22% examined
 - 5% submitted stool

Bacterial Pathogens

- Water/Foodborne
 - *Campylobacter*
 - *Salmonella* (nontyphi)
 - Enterohemorrhagic *E. coli* (EHEC) and Enterotoxigenic *E. coli* (ETEC)
 - *Vibrio*
 - *Yersinia*
 - *Clostridium perfringens*
 - *Bacillus cereus*
 - *Staphylococcus aureus*

- Person-to-person
 - *Shigella*
 - *Salmonella typhi*
Pathogenic Mechanisms

• Inoculum size
• Adherence
• Toxin Production
 – Enterotoxin
 – Cytotoxin
 – Neurotoxin
• Tissue invasiveness

Pathogenic Mechanisms

• Inoculum size
 – 10-100 organisms
 • *Shigella*
 – <1000 organisms
 • *Enterohemorrhagic E. coli (EHEC)*
 • *Salmonella typhi*
 • *Campylobacter jejuni*
 – 10^8 to 10^8 organisms
 • *Vibrio cholera*
 • *Salmonella (nontyphoidal)*
Pathogenic Mechanisms

• Toxin Production
 – **Enterotoxin**: cause watery diarrhea by acting directly on secretory mechanisms in the intestinal mucosa
 • *Vibrio cholera*, ETEC, *Clostridium perfringens*
 – **Cytotoxin**: cause destruction of mucosal cells and associated with inflammatory diarrhea
 • *Shigella*, Shiga-like toxin or verotoxin (EHEC)
 – **Neurotoxin**: act directly on central or peripheral nervous system
 • *Staphylococcus aureus*, *Bacillus cereus*

Pathogenic Mechanisms

• Cholera Toxin (enterotoxin)
 – Composition of Toxin
 • A subunit (enzymatic activity)
 • B subunit (binds to enterocyte surface receptor, the ganglioside \(\text{GM}_1 \))
 – After binding to enterocyte, A subunit
 • translocated across cell membrane
 • catalyzes ADP ribosylation of a GTP-binding protein resulting in persistent activation of adenylate cyclase
Cholera Toxin

Pathogenic Mechanisms

- Shiga Toxin (cytotoxin)
 - Produced by *S. dysenteriae*
 - B subunit binds to host cell glycolipid (Gb3) and facilitates transfer of A subunit
 - A subunit disrupts protein synthesis by preventing binding of aminoacyl-transfer RNA to the 60S ribosomal subunit
 - Results in destruction of intestinal cells and villi, decreasing intestinal absorption
Pathogenic Mechanisms

- **Staphylococcus Aureus enterotoxin** (neurotoxin)
 - Heat-stable toxin
 - Increases peristalsis by autonomic activation, resulting in intense vomiting
- **Bacillus Cereus enterotoxin**
 - Two enterotoxins
 - Emetic: incubation period 1-6 hours
 - Diarrheal: Incubation period 10-12 hours

Pathogenic Mechanisms

- **Tissue Invasion**
 - Salmonella Pathogenicity Island-1 and 2 (SPI-1 & SPI-2)
 - Binds to microfold cells (M cell) or enterocytes
 - Introduces salmonella-secreted invasion proteins (Sips or Ssps) into M cells resulting in membrane ruffling and phagocytosis
 - Replicates in phagosome (tolerant to acids)
 - Spreads to adjacent epithelial cells and lymphoid tissue.
Host Defenses

- Normal Flora
 - Anaerobes: acidic pH & fatty acid production prevent colonization by bacterial pathogens

- Gastric Acid
 - Increased frequency of Salmonella among patients with gastric bypass

- Intestinal Motility
 - Impaired motility allows for bacterial overgrowth

- Immunity
 - Secretory IgA, systemic IgG and IgM
 - Cell-mediated immunity
 • Binding of bacterial antigens to the luminal side of M cells in distal small intestines, subsequent presentation of antigen to subepithelial lymphoid tissue

Microbiology of Infectious Diarrheas

- **Aerobic Gram-neg Rods**
 - Enterobacteriaceae
 • *Escherichia*
 • *Salmonella*
 • *Shigella*
 • *Yersinia*
 - Vibrionacea
 • *Vibrio*
 - Campylobacteriaceae
 • *Campylobacter*

- **Gram-pos Rods**
 - *Bacillus*
 - *Clostridium*
Clinical approach to Infectious Diarrheas

<table>
<thead>
<tr>
<th></th>
<th>Watery Diarrhea</th>
<th>Bloody diarrhea (Dysentery)</th>
<th>Enteric Fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Non inflammatory (enterotoxin)</td>
<td>Inflammatory (invasion or cytotoxin)</td>
<td>Penetrating systemic infection</td>
</tr>
<tr>
<td>Location</td>
<td>Proximal small bowel</td>
<td>Colon or distal small bowel</td>
<td>Distal small bowel</td>
</tr>
<tr>
<td>Pathogens</td>
<td>Vibrio cholera</td>
<td>Shigella spp.</td>
<td>Salmonella typhi</td>
</tr>
<tr>
<td></td>
<td>ETEC</td>
<td>Salmonella</td>
<td>Yersinia enterocolitica</td>
</tr>
<tr>
<td></td>
<td>Clostridium Perfringens</td>
<td>Campylobacter jejuni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacillus cereus</td>
<td>EIEC (EHEC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staphlococcus aureus</td>
<td>Clostridium difficile</td>
<td></td>
</tr>
</tbody>
</table>

A case of watery diarrhea

- 1 year old boy with abrupt onset of watery diarrhea and vomiting
- No fever, no bloody stool
- Development of sunken eyes, dry mouth, inability to feed, lack of urination
- Lethargic, unresponsive, death
- Father also with watery diarrhea (1 liter/hour), vomiting, cramps
Vibrio Cholera

- Microbiology
 - Identified by Filippo Pacini in 1854 and Robert Koch in 1883
 - Curved gram negative bacillus with single polar flagellum
 - Over 200 serogroups, but only 01 and 0139 somatic antigens are associated with epidemic and pandemic cholera
 - Non-O1 or non-O139 can be pathogenic and cause small outbreaks
 - Pathogenesis related to acquisition of the vibrio pathogenicity island (VPI) and bacteriophage (CTXΦ) which can be transmitted laterally between strains

Vibrio cholera

- Epidemiology
 - Lives in aquatic environments attached to algae or crustacean shells
 - Multiplies when temperature, salinity, and nutrients are suitable
 - Both an endemic and epidemic pattern
 - Endemic in South Asia, especially in Ganges Delta
 - Seven pandemics since 1817
 - Spread along trade-routes
 - New endemic areas
 - Transmission through contaminated food and water, person-to-person transmission is unusual
The 7th Cholera Pandemic (O1 biotype EL Tor) 1961-1971

- 22 cases of Vibrio illness
- 5 deaths
 - V. vulnificus
 - V. parahaemolyticus
 - Non-O1 Non-O139
 - V. cholera
Vibrio Cholera

- Sulaymaniayah, Iraq
 - 3,182 cases of acute watery diarrhea, 9 deaths (CFR 0.3%) from 7/29-9/6/07
 - 283 confirmed cases of *Vibrio cholerae* from stool specimens
- Kirkuk, Iraq
 - 3,728 cases of acute watery diarrhea, 1 death (CFR 0.03%)

Vibrio cholera

- Clinical
 - Variable
 - 75% Asymptomatic
 - 20% Abrupt watery diarrhea
 - 5% Severe watery diarrhea, vomiting, and dehydration
 - No tenesmus, strain or abdominal pain, or fever
 - Dehydration
 - Duration 1-3 days
- Treatment
 - Rehydration: IV followed by Oral Rehydration Solution (glucose and electrolytes)
 - Doxycycline
A case of bloody diarrhea

• 4 yr old boy who goes to daycare
• 2 hour history of vomiting, diarrhea, fever, irritability and lethargy
• Physical exam
 – Fever
 – Tachycardia
 – Tachypnea
 – Mild dehydration

A case of bloody diarrhea

• Laboratory findings
 – Leukocytosis
 (WBC=13,200, 85% neutrophils)
 – negative blood cultures
 – Stool examination reveals fecal leukocytes, no ova and parasites
Shigella

• **Microbiology**
 – Small gram negative rod, member of Enterobacteriaceae, tribe Escherichiae
 – 40 serotypes. *Shigella sonnei* (40-80% cases in U.S.), *S. dysenteriae*, *S. flexneri*, *S. boydii*
 – *S. dysenteriae* 1 produces Shiga toxin

Shigella

• **Pathogenesis**
 – Low inoculum (<200 organisms)
 • Person-to-person spread, secondary cases common
 – Invasion of intestinal mucosa, moving from small to large intestines, with multiplication and mucosal destruction
 – Cytotoxin elaboration
 – Penetration beyond mucosa is rare
Shigella

• Clinical manifestations
 – 12 hours after ingestion, bacterial multiplication begins in the small intestines resulting in abdominal pain, cramping, watery diarrhea and fever
 – Resolution of fever in a few days
 – Onset of severe lower abdomen pain, accompanied by urgency, tenesmus, and bloody mucoid stools (dysentery)
 – Illness lasts for average of 7 days
 – Colonic shedding for 1-4 weeks
 – *S. dysenteriae* results in more serious diarrhea with risk of Hemolytic Uremic Syndrome (HUS)

E. coli

• Enterotoxigenic (ETEC): traveler’s diarrhea
• Enteroadherent (EAEC): traveler’s diarrhea and persistent diarrhea in children
• Enteropathogenic (EPEC): children’s diarrhea, nursery outbreaks
• Enterohemorrhagic (EHEC or STEC): hemorrhagic colitis, associated with HUS in children
• Enteroinvasive (EIEC): shigella-like dysentery
E. Coli O157:H7 epidemics

- 1982: ground beef
- 1990: drinking water
- 1991: apple cider
- 1992: hamburger
 - 28 illnesses in 6 states, 5 cases of HUS
 - PFGE analysis links isolates from 18 patients to ground beef from ConAgra
 - ConAgra recalls 18.6 million lbs of beef
- 2006: spinach
 - 173 illnesses in 25 states, 28 cases of HUS, 92 hospitalizations and 1 death
 - Spinach implicated grown in Monterey, San Benito and Santa Clara, CA.
 - Recalls by Pacific Coast Fruit Company, Triple B Corporation, S.T. Produce, RLB Food Distributors, and Natural Food Selection Foods
Course of EHEC in children

Hemolytic Uremic Syndrome

- Hemolytic anemia with fragmented erythrocytes
- Thrombocytopenia
- Acute renal injury
A case of Enteric Fever

- A 23 year old P&S student develops persistent fevers 2 weeks after returning from Mexico
 - Associated with headache, malaise and anorexia
 - Missed student health appointment prior to departure
 - Had self limited diarrhea while in Mexico
- Physical examination
 - Splenomegaly
 - Salmon pink rash
- Laboratory data
 - Leukopenia
 - Blood culture: gram negative rod
Salmonella

- **Microbiology**
 - Gram negative, facultative anaerobic rod
 - More than 2500 serotypes
 - *S. typhi* and *S. paratyphi*
 - Nontyphoidal Salmonella (*S. enteritidis, S. typhimurium S. virchow, S. dublin, S. cholerasuis etc…*)
- **Epidemiology**
 - *S. typhi* and *S. paratyphi* are strict human pathogens
 - Nontyphoidal salmonella colonizes virtually all animals; therefore, causes infection through contaminated food
 - Up to 0.1% of eggs contain *S. enteritidis*

Salmonella

- **Pathogenesis**
 - Ingested Salmonella induce endocytosis by M cells and enterocytes in small intestines
 - Organisms replicate within phagosomes
 - Transcytose to basolateral surface and interact with macrophages and lymphocytes in Peyer’s patch
 - Recruitment of additional mononuclear cells and lymphocytes resulting in mucosal necrosis
 - Spread systemically to bone marrow, liver, spleen within macrophages
 - Risk of invasive salmonellosis greater in patients with impaired cell-mediated immunity (AIDS, transplant)
Salmonella

• Clinical Manifestations of Nontyphoidal Salmonella (S. typhimurium, S. enteritidis etc.)
 – Gastroenteritis
 • Nausea, vomiting, diarrhea 6-48 hours after ingestion
 • Fever, abdominal cramping
 • Self limited (3-7 days)
 – Bacteremia
 • Occurs more rapidly than Typhoid and lacks typical rose spots and leukopenia
 • Often in AIDS patients
 – Tissue invasion/localized infections
 • Arterial infections, cholecystitis, osteomyelitis, septic arthritis

Salmonella

• Clinical Manifestations of S. typhi and S. paratyphi
 – Enteric Fever
 • Fever begins 5-21 days after ingestion and persists 4-8 weeks in untreated patients
 • Rose spots (30%), hepatosplenomegaly (50%)
 • Most symptoms resolved by fourth week
 • Complications: death in 1-30%; intestinal perforation, abscesses, endocarditis; relapse in 10%.
 – Asymptomatic carriage
 • 1-4%
Who is this woman?

Typhoid Mary

- 1900-1907: Mary Mallon linked to 7 family epidemics
- 1907-1910: confined to Willard Parker Hospital
- 1915: A devastating outbreak linked to Mary
- Confined to North Brother Island until death in 1938
Approach to the patient with acute diarrhea

Approach to patient

• History
 – Clinical features
 • Onset (abrupt, gradual) and duration
 • Stool characteristics (watery, bloody, mucous) and frequency
 • Associated symptoms (fever, tenesmus, nausea, vomiting, abdominal pain, rash)
 • Systemic symptoms (thirst, tachycardia, orthostasis, decreased urination, lethargy, altered sensorium)
Approach to patient

• History
 – Epidemiological features
 • Travel to developing area
 • Consumption of unsafe foods (raw foods, unpasteurized dairy) or water
 • Illness in others with common food source
 • Sick contacts (kids in daycare, co-workers)
 • Oral-anal sexual contact
 • Recent antibiotics or hospitalization
 • Underlying medical conditions (AIDS, transplant, gastric bypass)

Approach to patient

• Stool evaluations (especially if bloody stool, and clinically severe)
 – Fecal leukocytes
 – Bacterial culture
 – Toxin
 • Clostridium difficile toxin
 • Shiga toxin
 • Shiga-like toxin (EHEC)
 – Ova and parasites
Treatment

• Rehydration
• Antibiotics
 – Traveller’s Diarrhea (ETEC)
 – Moderately-severe invasive disease (shigella, campylobacter, salmonella)
 – Avoid antibiotics for EHEC