Functions of Complement

A. Host Defense
B. Disposal of Waste
C. Regulation of the Immune Response

Complement Cascades

Classical System
- C1
- C4
- C2
- C3
- C5
- C6
- C7
- C8
- C9

Alternative Pathway
- Properdin (P)
- B
- D

Nomenclature

- Inactive Protein - C3
- Enzyme Complexes
- Cleaved Products - C3a, C3b, iC3b, C3dg (many have enzymatic and biologic activity)
- Alternative Pathway C3 convertase - C3bBb
- Classical Pathway C3 Convertase – C4bC2b

Alternative Pathway

Inactive C3

Active C3

Properdin (P)
(P stabilizes the complex formed by C3b and Bb)
Concerning C2 Nomenclature

There is an argument about nomenclature
Classicists and Abbas – big piece C2a, little piece C2b (the original nomenclature)
Revisionists and Janeway – big piece C2b, little piece C2a (to be consistent with the rest of the complement notational conventions)
Absolutely not on the exam

Gene Duplication

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
</tr>
<tr>
<td>B</td>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
</tbody>
</table>

Activation of Complement - The Lectin Pathway

- A lectin is a molecule that binds to carbohydrate structures
- A collectin (like C1q or Mannose Binding Protein) is a lectin with collagen-like features
- It is simplistic to think of each “pathway” as acting in isolation. Thus, once the classical pathway has produced some C3b, these C3b molecules produce more C3b using the alternative pathway
- C-reactive protein (CRP) – An “acute phase” protein produced by the liver, binds to bacterial cell wall lipopolysaccharides. C1q then binds to CRP and thus activates complement without involving antibodies. The test for CRP is frequently ordered in clinical situations where inflammation is suspected
Mannose Binding Lectin (MBL)

- MBL – A collectin similar in structure to C1q first binds to mannose on bacterial cell walls. It then binds MASP 1, 2, or 3. (Mannose binding lectin – Associated Serine Proteases). These can then activate C4 and C2 and thus the classical pathway without involving antibodies.
- Deficiency in MBL is associated with increased susceptibility to bacterial infections

Mannose Binding Lectin

MBL, MASP1, MASP2

C4

C2

C3

Complement Receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>CD Designation</th>
<th>Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>CD35</td>
<td>C3b</td>
</tr>
<tr>
<td>CR2</td>
<td>CD21</td>
<td>C3d</td>
</tr>
<tr>
<td>CR3</td>
<td>CD11b/CD18</td>
<td>iC3b</td>
</tr>
<tr>
<td>CR4</td>
<td>CD11c/CD18</td>
<td>iC3b</td>
</tr>
</tbody>
</table>

Molecules That Regulate Complement

- MCP (Membrane Cofactor Protein, CD46) and DAF (Decay Accelerating Factor, CD55) - Cell surface molecules that inhibit C3b
- Factor H and C4b binding protein – Fluid phase molecules that bind C3b and C4b respectively
- Factor I – Fluid phase molecule that cleaves C3b when it is bound to Factor H, CR1 or MCP
- CD 59 (membrane bound) and Plasma S Protein both interfere with the Membrane Attack Complex

Regulators of Complement Activation (RCA) Family

(Interact with C3 and/or C4)

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Membrane-bound</th>
<th>Fluid phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C3 ➔ Alternative and Classical Pathway

C3b + C3a ➔ C3 convertases

Factor I + Factor H or CR1 or MCP

iC3b ➔ Factor I + CR1

iC3b + C3f ➔ Serum proteases

C3e +C3dg ➔ Serum Proteases

C3d + C3g
Host Defense

1) Lysis of Pathogens
2) Induction of Inflammation
3) Opsonization

C5a, C3a, C4a

- Smooth muscle contraction
- Increased vascular permeability
- C3a, C5a induce vascular adhesion molecules
- C5a activates leukocytes and induces chemotaxis
- Cause mast cell mediator release

Massive mediator release causes syndrome similar to anaphylaxis
β_2 Integrins

<table>
<thead>
<tr>
<th>Names</th>
<th>CD</th>
<th>Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFA-1</td>
<td>CD11a/CD18</td>
<td>ICAMs</td>
</tr>
<tr>
<td>CR3 (Mac-1)</td>
<td>CD11b/CD18</td>
<td>iC3b, ICAMs, many others</td>
</tr>
<tr>
<td>CR4 (p150, 95)</td>
<td>CD11c/CD18</td>
<td>C3b, iC3b</td>
</tr>
</tbody>
</table>

Leukocyte Adhesion Deficiency (LAD)

Absence of CD18
No LFA-1, CR3, CR4
Phagocytosis Impaired

Patients susceptible to bacterial infections

Functions of Complement

Disposal of Waste

Immune Complex Removal

Apoptotic Cell Debris Removal

Functions of Complement

Disposal of Waste

C1q helps removal of apoptotic cell debris
(Antibody not required)

Failure in C1q deficiency
(1) Increased deposition of debris in kidney
(2) Possibly stimulates production of autoantibodies

Functions of Complement

A. Host Defense

B. Disposal of Waste

C. Regulation of the Immune Response
Immune Regulation by C3dg

C3dg bound to antigen binds to CR2

(1) Stimulates B cells
(2) Epstein-Barr Virus (EBV) uses CR2 to enter B cells

Disorders of the Complement System

Hereditary Angioneurotic Edema

Hereditary Angioneurotic Edema

Paroxysmal Nocturnal Hemoglobinuria

1) Stem cell clone arises that does not have DAF and CD59
2) Red cells and platelets cannot repair damage caused by unregulated complement
3) Patients suffer hemolysis and thrombosis
Factors H & I Deficiency

1) Consumption of C3
2) Acquired C3 deficiency
3) Susceptibility of patients to bacterial infection

Complement Deficiencies

C1q, C1r, C1s, C2, C4 Markedly increased incidence of autoimmune disease
Moderate increased incidence of pyogenic infections
H, I, C3 Increased incidence of pyogenic infections. Moderately increased incidence of autoimmune disease
Properdin, Factor D, C6, C7, C8, C9 Increased incidence of Neisseria infection
CR3, CR4 Increased incidence of pyogenic infection
C1 INH Hereditary angioedema
DAF, CD59 Paroxysmal nocturnal hemoglobinuria

Complement Tests

- Tests that simply measure the presence of a protein
- Tests that measure whether a protein (e.g. C1 inhibitor) or an entire system is functional
- Total Hemolytic Complement (CH50) is a commonly ordered test that measures the combined function of the classical and membrane attack systems

Total Hemolytic Complement Measurement

Method
Mix RBC, Anti-RBC, Serial dilutions of serum
Results
Serum Dilutions: 1/50 1/100 1/150 1/200
Hemolysis: 100% 100% 50% 20%

CH50 = 150 (Reciprocal of 1/150)

Measurement of Complement

Systemic lupus erythematosis CH50 tends to fall
Hereditary angioedema (HAE) C1 INH levels low
C4 Deficiency (also other deficiencies of the classical pathway and the membrane attack complex) CH50 essentially zero If zero CH50 of zero is noted in patients with autoimmune disease, check for deficiencies in the classical pathway or membrane attack complex.
Recurrent Neisseria Infections Properdin, Factor D, C5, C6, C7, C8, C9 (Any of these can be absent)