Systemic Lupus Erythematosus (SLE)

Clinical features
- A chronic autoimmune disease with variable tissue injury in multiple organs, including kidney, brain, skin, joints, heart, lungs, muscles and blood
- Strong genetic predisposition; MHC and non-MHC immune response genes, females >> males (>10/1)
- The onset may be insidious or fulminant, typically appearing in a previously healthy person in adolescence or young adulthood
- The course is characterized by multiple flares and remissions
- Therapy involves intensive use of high-dose corticosteroids and alkylating agents or other non-specific immunosuppressive drugs

Major Clinical Manifestation of SLE

<table>
<thead>
<tr>
<th>Manifestation</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthralgias/arthritis</td>
<td>95</td>
</tr>
<tr>
<td>Hematological</td>
<td>90</td>
</tr>
<tr>
<td>Rash</td>
<td>81</td>
</tr>
<tr>
<td>Fever</td>
<td>77</td>
</tr>
<tr>
<td>Neurologic</td>
<td>59</td>
</tr>
<tr>
<td>Renal</td>
<td>53</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>48</td>
</tr>
<tr>
<td>Cardiac</td>
<td>38</td>
</tr>
</tbody>
</table>

Lupus Erythematosus: Epidemiologic findings
- Primarily a disease of young adults
 Peak incidence age 15-45
- Marked female preponderance
 Sex ratio during peak incidence is 10 : 1, female : male
- Distinctive ethnic distribution
 Greatly increased incidence among African-Americans (0.3%), compared to Caucasoids or Blacks in Africa. Similarly increased incidence among Hispanics, Mestizo Indians in Mexico, Sioux Indians, and generally among Chinese and Filipinos, but not among most other Asian peoples.

Clinical features of SLE which reflect an ongoing immune response
- lymphadenopathy with active germinal center formation, splenomegaly
- polyclonal hypergammaglobulinemia
- anti-nuclear antibodies, anti-dsDNA, multiple antibodies to other nuclear structures
- lymphopenia, thrombocytopenia, hemolytic anemia
- cytokine mediated systemic phenomena: fever, malaise, weight loss (TNFα, IL-1β)

Autoantibodies in SLE
I. Antibodies to DNA
 - double-stranded DNA (unique to SLE)
 - double- and single-stranded DNA
 - single-stranded DNA
II. Antibodies to Deoxyribonucleoprotein
 - Antigen: complex of DNA and histone
III. Antibodies to Other Nuclear and Cytoplasmic Constituents
 - histones
 - nonhistone nuclear proteins
 - a. Small nuclear ribonucleoproteins (snRNPs)
 - Sm antigen (SLE specific), Ro / La
 - b. ENA (not specific for SLE), RNA
 - c. DNA (not specific for SLE), RNP
IV. Antibodies to Cell Membrane Antigens
 - red blood cells, platelets
 - T cells, B cells, macrophages, granulocytes
 - β2 microglobulin, cardioplin
V. Antibodies to soluble proteins
 - Anti-ENA (not specific for SLE)
 - Antidouble-stranded DNA
 - Anti-γ globulin
 - Anti-sm antibodies

Systemic Lupus Erythematosus (SLE)
- SLE is the prototypic systemic autoimmune disease where the dominant autoimmune response is the production of an array of autoantibodies to self-antigens including nuclear components (DNA, RNA, histones) as well as autoantibodies to cell membrane determinants on hematopoietic cells including (RBC, platelets and leukocytes).
- The autoantibodies induce injury by forming immune complexes with autoantigens which deposit in vessels walls to cause vasculitis and glomerulonephritis. The auto antibodies may also directly bind to cell membranes and destroy cells by activating complement killing and by triggering FcR-mediated inflammatory and cytotoxic mechanisms.
- The B cell autoantibody response is in turn driven by MHC-restricted CD4+ T cells that recognize self peptides likely bound by HLA-DR2 & DR3 MHC molecules.
Antinuclear autoantibodies in SLE

Anti dsDNA antibodies are highly specific for SLE

Anti dsDNA pattern on Hep 2 cells that accompanies anti dsDNA antibodies, may include anti lamin and anti Ku

Anti dsDNA staining of Crithidia kinetoplast. Very specific

Anti ds DNA
>50-75%, Specific for SLE
Anti ssDNA, non specific

Antinuclear autoantibodies in SLE

Anti histone and anti DNA antibodies (nucleosome)

Anti ds DNA
(30-40%) SLE, not specific for SLE,
>90% in drug induced lupus

Anti histone

Many SLE autoantigens are large complexes of RNA and multiple proteins

• Four small uridine-rich RNA molecules, hY1, 3, 4, 5 RNA variably associate with Ro and La proteins

Anti Ro 52kD, Ro 60kD, La

Anti Ro 52kD and anti 60kD
60% SLE,
90% Sjogren’s syndrome

Anti La
15% SLE,
60% Sjogren’s syndrome

Lupus Nephritis

Diffuse, segmental proliferative / necrotizing glomerulitis, Class IV

>50% of glomeruli involved with
endocapillary or mesangial hypercellularity,
epithelial crescents, or fibrinoid necrosis

Large subendothelial deposition of immune complexes in glomerular basement membrane

Clinically: Most severe. Renal insufficiency in >50%. Red cell casts, hematuria and HBP.

Infarction of distal vessels by reactive vascular proliferation and occlusion induced by deposition of immune complexes

May occur in nearly any organ
Lupus Erythematosus

Strong familial aggregation: 25% cases have affected blood relative, 50% concordance of identical twins

Genetic associations

- MHC genes: HLA-DR2, and HLA-DR3 (DRB1*0301)
- MHC genes: C2, C4(?) deficiency
- Polymorphism of FcRIIa and FcRIII
- Fas gene deficiency

SLE pathogenesis

- **Genetic susceptibility:**
 - Complex polygenic
 - Genes Involved:
 - MHC class II
 - Complement deficiency
 - Multiple non-MHC (unknown)
 - X-chromosomal (unknown)

- **CD4+ T cell**
 - Driving force
 - Autoreactive to self peptides

- **Autoactive B cells**
 - Self-antigen driven

- **IgG autoantibody Production**

- **Autoantibody-mediated Disease**

Two major mechanisms of antibody-mediated tissue injury operating in SLE

<table>
<thead>
<tr>
<th>Type of antibody</th>
<th>Mechanism of injury</th>
<th>Clinical consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune complex formation and deposition</td>
<td>Ag/Ab complexes deposit in vessel walls, causing inflammation by activation of complement cascade and activation of FcR on phagocytes, mesangial cells, NK cells</td>
<td>Glomerulonephritis, dermatitis, serositis (arthritis, pleuritis, pericarditis), diffuse vasculitis</td>
</tr>
<tr>
<td>Direct binding to and lysis of cells</td>
<td>Antibody binds to and kills cells by activating the complement attack complex or interacting with FcR expressing phagocytes or NK cells</td>
<td>Hemolytic anemia, thrombocytopenia, leukopenia, aplastic anemia, autoimmune thrombocytopenic purpura, (ITP like syndrome), clotting factors, β2-glycoprotein I (anti-phospholipid syndrome)</td>
</tr>
</tbody>
</table>

Serum Sickness develops after injection of soluble foreign antigens

Disease:
- Vasculitis
- Glomerulitis
- Arthritis
- Pleuritis
- Pericarditis
- Dermatitis

Clinical features attributable to SLE autoantibodies reacting with cell surface structures or soluble proteins

<table>
<thead>
<tr>
<th>Autoantibodies directed to cell surface structures or soluble proteins</th>
<th>Clinical consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-dsDNA</td>
<td>Nephritis, vasculitis</td>
</tr>
<tr>
<td>Immune complexes</td>
<td>Nephritis, vasculitis</td>
</tr>
<tr>
<td>Anti-phospholipid antibodies</td>
<td>Thrombosis, fetal loss</td>
</tr>
<tr>
<td>Anti-β2-glycoprotein I</td>
<td>Thrombosis</td>
</tr>
<tr>
<td>Anti-β2-glycoprotein I</td>
<td>Thrombosis</td>
</tr>
</tbody>
</table>

SLE course reflecting presence of immune complex disease

- Anti-dsDNA autoantibodies
- CH50
An important normal function of complement is to regulate the disposition of immune complexes

- C1q binds to IgG in complex and activates C3
- C3b attaches and mediates binding of the complex to CR1 (CD35) on red blood cells
- The immune complexes are solubilized or transported to the spleen on RBC where the immune complexes are phagocytosed and degraded by macrophages and removed from the circulation

If excess immune complexes are not physiologically cleared they deposit in tissues and initiate inflammatory programs

- Interact with FcR or CR on circulating or tissue cells (Monocytes, macrophages, neutrophils, NK cells, etc.) and initiate a receptor mediated proinflammatory program, e.g. leukocyte mediated killing, cytokine release & vasculopathy
- Deposit in blood vessel wall or in glomerulus where initiate inflammation by either interacting with complement and CR of a tissue cell, or interacting directly with FcR on the tissue cells, initiating a receptor mediated proinflammatory program resulting in immune complex disease

Several genetic diseases emphasize the importance of a normal complement system in preventing autoimmunity

- Inherited C1q deficiency strongly predisposes to SLE, perhaps through a central role of C1q in handling disposal of apoptotic cells
- Inherited C2 deficiency results in a disease with many features of SLE, but without nephritis
- The MHC haplotype HLA-A1-B8-DR3 strongly predisposes to SLE. This haplotype contains a defective C4 gene in the class III region of the MHC as well as the known HLA-DR3 susceptibility gene

The role of FcR- immune complex interactions in mediating inflammation and immune injury in SLE

- Immune complexes interact with Fc receptors to initiate a receptor mediated proinflammatory program
- Polymorphism of FcRIIa and FcRIII in humans affect affinity of these FcR for IgG and influence the occurrence and severity of nephritis in SLE
- FcRIII α or γ-chain plays a critical role in initiating immune complex inflammation in mice with spontaneous autoimmune diseases as shown by the absence of this pathway of injury in FcRIII "knockout" mouse strains despite the presence of immune complexes

Two similar mechanisms of immune complex glomerulitis

- In situ formation of complex on "planted" autoantigen
- Deposition of preformed soluble complexes
Why do SLE patients make autoantibodies?

(1) Anti-self immunity: abrogation of self tolerance
SLE might be the result of insufficient elimination of autoreactive T cell clones in the thymus or periphery. This might result in such autoreactive T cells being released into the peripheral circulation and causing the autoimmune features of the disease.

(2) Hidden antigens
The nuclear and cytoplasmic antigens that are associated with autoimmunity are not commonly exposed to the immune system. If such antigens (dsDNA, for example) are liberated during cellular turnover, they may incite an immune response. Thereafter, further release of such antigens might form the nidus for IC.

(3) Cross reactivity
SLE might be a disease caused by an unknown pathogen such as a virus or a bacterium. The interaction of pathogen derived peptides with a susceptible HLA haplotype may elicit "autoimmune" diseases by activating pathogenic T cells. Such a pathogen has not been identified in SLE, but no feature of the disease suggests that this could not be the etiology.

(4) Abnormal regulation: failure of suppression
SLE might arise as a consequence of abnormalities in regulatory CD4+ or CD8+ T cells.

Evidence that T cells are important in the development of SLE

- The pathogenic anti-DNA antibodies in SLE are high affinity IgG molecules. Because it is known that class switching to IgG as well as somatic mutation and affinity maturation requires T cells, we infer that anti-DNA antibody producing B cells are expanded in SLE by a process that mimics the normal CD4+ T cell-dependent responses, involving common mechanisms of somatic mutation, affinity maturation, and IgG to IgG class switching.

- The MHC class II restriction and the known association of DR2 and DR3 with susceptibility to SLE also strongly point to a predominant role of CD4+ T cells in the induction of autoimmunity in SLE.

- Finally, animal models of SLE are effectively treated with molecules which block key functions of CD4+ T cells.

Expression of Membrane Proteins Following Antigen Specific Activation of T and B Cells

CONSEQUENCES OF CD40L/CD40 INTERACTIONS DURING T-B CELL INTERACTIONS

- Triggering of B cell proliferation
- Rescue from apoptosis
- Induction of Ig light chain class switching
- Up-regulation of B71 and B72
- Germinal center formation
- Up-regulation of CD23
- Downregulation of CD40L expression
Final Phases of B cell Differentiation are Mediated by Contact T cell signals (CD40L/CD40) and Lymphokines

Activated B cell

Lymphokines
IL-2, IL-4, IL-5, IL-6, IFN-γ, TGF-β

Activated T cell

Plasma Cell

IgG
IgA
IgE

Molecular Interactions of Helper T Cells and APC/B Cells: Potential targets of therapy for SLE

CD4+ T Cell

APC/ B cell

CTLA-4
CD28
CD5
CD45
CD2
CD40
LFA-3
LFA-1
ICAM-1
MHC II
CD40L
peptide
B7
CD20