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HEUMATOID arthritis is a common chron-
ic inflammatory and destructive arthropathy
that cannot be cured and that has substantial

personal, social, and economic costs. The long-term
prognosis is poor: 80 percent of affected patients are
disabled after 20 years,

 

1

 

 and life expectancy is reduced
by an average of 3 to 18 years.
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 The medical cost of
rheumatoid arthritis averages $5,919 per case per year
in the United States
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 and approximately £2,600 per
case per year in the United Kingdom.

 

4

 

 Current slow-
acting antirheumatic drugs have limited efficacy and
many side effects. Moreover, they do not improve the
long-term prognosis of rheumatoid arthritis.

 

1

 

The inflammatory process is usually tightly regulat-
ed, involving both mediators that initiate and maintain
inflammation and mediators that shut the process
down. In states of chronic inflammation, an imbalance
between the two mediators leaves inflammation un-
checked, resulting in cellular damage. In the case of
rheumatoid arthritis, this damage is manifested by the
destruction of cartilage and bone.

Efforts to develop safer and more effective treat-
ments for rheumatoid arthritis that are based on an
improved understanding of the role of inflammatory
mediators are beginning to bear fruit. Treatments
such as etanercept, a soluble tumor necrosis factor 

 

a

 

(TNF-

 

a

 

) type II receptor–IgG1 fusion protein, and
infliximab, a chimeric (human and mouse) monoclon-
al antibody against TNF-

 

a

 

, have been approved by the
Food and Drug Administration and the European
Medicine Evaluation Agency for rheumatoid arthritis.
These therapies could dramatically change the treat-
ment and outcome of the disease.

 

PATHOGENESIS OF RHEUMATOID 

ARTHRITIS

 

The synovial membrane in patients with rheumatoid
arthritis is characterized by hyperplasia, increased vas-
cularity, and an infiltrate of inflammatory cells, pri-
marily CD4+ T cells, which are the main orchestrator

R

 

of cell-mediated immune responses. In genetic studies,
rheumatoid arthritis is strongly linked to the major-
histocompatibility-complex class II antigens HLA-
DRB1*0404 and DRB1*0401.
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 The main function
of HLA class II molecules is to present antigenic pep-
tides to CD4+ T cells, which strongly suggests that
rheumatoid arthritis is caused by an unidentified ar-
thritogenic antigen.
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 The antigen could be either an
exogenous antigen, such as a viral protein, or an en-
dogenous protein. Recently, a number of possible
endogenous antigens, including citrullinated protein,
human cartilage glycoprotein 39, and heavy-chain–
binding protein, have been identified.
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Cellular Mediators of Inflammation and Joint Damage

 

Antigen-activated CD4+ T cells stimulate mono-
cytes, macrophages, and synovial fibroblasts to pro-
duce the cytokines interleukin-1, interleukin-6, and
TNF-

 

a

 

 and to secrete matrix metalloproteinases (Fig.
1) through cell-surface signaling by means of CD69
and CD11
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 as well as through the release of soluble
mediators such as interferon-

 

g

 

 and interleukin-17. In-
terleukin-1, interleukin-6, and TNF-

 

a

 

 are the key cy-
tokines that drive inflammation in rheumatoid arthri-
tis. Activated CD4+ T cells also stimulate B cells (Fig.
1), through cell-surface contact and through the bind-
ing of 

 

a

 

L

 

b

 

2

 

 integrin, CD154 (CD40 ligand), and
CD28, to produce immunoglobulins, including rheu-
matoid factor. The precise pathogenic role of rheuma-
toid factor is unknown, but it may involve the activa-
tion of complement through the formation of immune
complexes. Activated CD4+ T cells express osteopro-
tegerin ligands that stimulate osteoclastogenesis (Fig.
1). Such activated T cells caused joint damage in an
animal model of rheumatoid arthritis.
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These activated macrophages, lymphocytes, and fi-
broblasts, as well as their products, can also stimulate
angiogenesis, which may explain the increased vascu-
larity found in the synovium of patients with rheu-
matoid arthritis. Endothelial cells in the synovium are
activated and express adhesion molecules that promote
the recruitment of inflammatory cells into the joint.
This process is enhanced by the release of chemokines,
such as interleukin-8, by inflammatory cells in the
joint. The detailed mechanisms of these complex cel-
lular interactions remain elusive.

 

Soluble Mediators of Inflammation and Joint Damage

 

Monocytes, macrophages, fibroblasts, and T cells
release numerous cytokines on stimulation. Most of
these cytokines, including TNF-

 

a

 

 and interleukin-1,
can be detected in synovial fluid from patients with
rheumatoid arthritis.
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 Both TNF-

 

a

 

 and interleukin-1
are likely to have primary roles in the pathogenesis of
rheumatoid arthritis. The serum and synovial concen-
trations of both cytokines are high in patients with ac-
tive rheumatoid arthritis.

 

11,12

 

 Furthermore, TNF-

 

a

 

 and
interleukin-1 are potent stimulators of mesenchymal
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cells, such as synovial fibroblasts, osteoclasts, and chon-
drocytes, that release tissue-destroying matrix metallo-
proteinases.

 

13

 

 Interleukin-1 and TNF-

 

a

 

 also inhibit
the production of tissue inhibitors of metalloprotein-
ases by synovial fibroblasts.

 

13

 

 These dual actions are
thought to lead to joint damage. Perhaps by inducing
the production of interleukin-11, TNF-

 

a

 

 stimulates

the development of osteoclasts, which are responsible
for bone degradation.

 

14

 

TNF-a

 

TNF-

 

a

 

 is a potent cytokine that exerts diverse ef-
fects by stimulating a variety of cells. It is a soluble
17-kd protein composed of three identical subunits.

 

Figure 1.

 

 Cytokine Signaling Pathways Involved in Inflammatory Arthritis.
The major cell types and cytokine pathways believed to be involved in joint destruction mediated by TNF-

 

a

 

 and interleukin-1 are
shown. Th2 denotes type 2 helper T cell, Th0 precursor of type 1 and type 2 helper T cells, and OPGL osteoprotegerin ligand.
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It is produced mainly by monocytes and macrophages,
but also by B cells, T cells, and fibroblasts. Newly syn-
thesized TNF-

 

a

 

 is inserted into the cell membrane
and subsequently released through the cleavage of its
membrane-anchoring domain by a serine metallopro-
teinase.

 

15

 

 Thus, TNF-

 

a

 

 secretion might be suppressed
by inhibitors of this enzyme.
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Perhaps the best-studied aspect of TNF-

 

a

 

 is its
ability to promote inflammation. TNF-

 

a

 

 is an auto-
crine stimulator as well as a potent paracrine inducer
of other inflammatory cytokines, including interleu-
kin-1, interleukin-6, interleukin-8, and granulocyte–
monocyte colony-stimulating factor.

 

17-19

 

 TNF-

 

a

 

 also
promotes inflammation by stimulating fibroblasts to
express adhesion molecules, such as intercellular ad-
hesion molecule 1.

 

20

 

 These adhesion molecules inter-
act with their respective ligands on the surface of leu-
kocytes, resulting in increased transport of leukocytes
into inflammatory sites, including the joints in patients
with rheumatoid arthritis.

TNF-

 

a

 

 indirectly down-regulates inflammation by
stimulating the release of corticotropin from the pi-
tuitary.

 

21

 

 This hormone stimulates the adrenal cortex
to release cortisol, which inhibits inflammation.

As an inflammatory cytokine, TNF-

 

a

 

 has an im-
portant — perhaps dominant — role in rheumatoid
synovitis. In cultures of synovial cells from patients
with rheumatoid arthritis, blocking TNF-

 

a

 

 with anti-
bodies significantly reduced the production of inter-
leukin-1, interleukin-6, interleukin-8, and granulo-
cyte–monocyte colony-stimulating factor.
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 Hence,
the blockade of TNF-

 

a

 

 may have a more global effect
on inflammation than the blockade of other cytokines
present in high concentrations in synovial fluids, such
as interleukin-1.

The results of studies in animals provide further
evidence of the importance of TNF-

 

a

 

 in rheumatoid
arthritis. In transgenic mice that expressed a deregu-
lated human TNF-

 

a

 

 gene, an inflammatory and de-
structive polyarthritis similar to rheumatoid arthritis
spontaneously developed.

 

22

 

 Pretreatment of these an-
imals with a monoclonal antibody against TNF-

 

a

 

 pre-
vented the development of arthritis. Blocking TNF-

 

a

 

with a soluble TNF-receptor fusion protein or with
monoclonal antibodies also ameliorated disease activi-
ty in mice with type II collagen-induced arthritis.

 

23,24

 

Interleukin-1

 

Interleukin-1 is a 17-kd protein that is mostly pro-
duced by monocytes and macrophages but is also
produced by endothelial cells, B cells, and activated
T cells.

 

25

 

 The interleukin-1 signaling system is more
complex than the TNF-

 

a

 

 system. Interleukin-1 binds
to two types of cell-surface receptors.

 

26,27

 

 Only type I
receptors have a cytoplasmic tail and are capable of
intracellular signaling.

 

28

 

 Type II receptors are decoy
receptors: they bind circulating interleukin-1 but do
not deliver any intracellular signals.

 

29

 

 The type I re-

ceptor is found in low numbers on many cells, where-
as the type II receptor is expressed primarily on neu-
trophils, monocytes, and B cells.

 

30

 

 Soluble forms of
both types of interleukin-1 receptor compete with cell-
surface receptors, thereby decreasing interleukin-1–
mediated activation of cells. In addition, a naturally
occurring antagonist, interleukin-1–receptor antago-
nist, binds the type I receptor with high affinity with-
out triggering a signal, thus providing another mech-
anism for the inhibition of interleukin-1 activity.

 

31

 

 The
biologic activity of interleukin-1 is dependent on the
precise quantities of many interacting molecules.

Studies of arthritis in animals have strongly implicat-
ed interleukin-1 in joint damage. Injection of inter-
leukin-1 into the knee joints of rabbits results in the
degradation of cartilage,

 

32

 

 whereas the injection of
antibodies against interleukin-1 ameliorates collagen-
induced arthritis in mice and decreases the damage
to cartilage.

 

33

 

 Macrophages in the synovial tissue of pa-
tients with rheumatoid arthritis appear to be an impor-
tant source of interleukin-1.

 

34

 

 Like TNF-

 

a

 

, interleu-
kin-1 may cause damage by stimulating the release of
matrix metalloproteinases from fibroblasts and chon-
drocytes.

 

13,35

 

 The concentrations of interleukin-1–
receptor antagonist are high in the synovial fluid of pa-
tients with rheumatoid arthritis, but not high enough
to suppress inflammation.

 

36

 

Interleukin-6

 

Interleukin-6 is a pleiotropic inflammatory cytokine
produced by T cells, monocytes, macrophages, and
synovial fibroblasts.

 

37

 

 Originally identified as a factor
that induces the final maturation of B cells into plasma
cells, interleukin-6 is involved in diverse biologic proc-
esses, such as the activation of T cells, the induction
of the acute-phase response, the stimulation of the
growth and differentiation of hematopoietic precur-
sor cells, and the proliferation of synovial fibroblasts.

 

37

 

Antiinflammatory Cytokines

 

Whereas some cytokines initiate and maintain the
inflammatory process, others dampen it. The two best-
studied antiinflammatory cytokines are interleukin-10
and interleukin-4. In vitro, these cytokines cooper-
ate to inhibit the production of inflammatory cyto-
kines.

 

38,39

 

Interleukin-10

 

Interleukin-10 is produced by monocytes, macro-
phages, B cells, and T cells. It inhibits the produc-
tion of several cytokines, including interleukin-1 and
TNF-

 

a

 

, and the proliferation of T cells in vitro.

 

40

 

 In-
terleukin-10 can also reverse the cartilage degradation
mediated by antigen-stimulated mononuclear cells
from patients with rheumatoid arthritis.

 

38

 

 Although
interleukin-10 is found in the synovial fluid of patients
with rheumatoid arthritis, the amount may be insuf-
ficient to suppress inflammation.

 

41
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Interleukin-4

 

Interleukin-4 is produced by CD4+ type 2 helper
T cells and participates in the differentiation and
growth of B cells.

 

40

 

 In vitro, interleukin-4 inhibits
the activation of type 1 helper T cells, and this, in turn,
decreases the production of interleukin-1 and TNF-a
and inhibits cartilage damage.42 Interleukin-4 also
inhibits the production of interleukin-6 and interleu-
kin-8.39 In cultures of synovium samples from pa-
tients with rheumatoid arthritis, interleukin-4 inhib-
ited the production of interleukin-1 and increased the
expression of interleukin-1–receptor antagonist, both
of which actions should decrease inflammation.36

Joint Damage in Rheumatoid Arthritis

Rheumatoid arthritis is characterized by progres-
sive joint damage that is mediated by several mech-
anisms (Fig. 1 and 2). Early erosion of cartilage and
bone is associated with the formation of a proliferat-
ing pannus. The interface between pannus and car-
tilage is occupied predominantly by activated macro-
phages and synovial fibroblasts that express matrix
metalloproteinases and cathepsins.

Interleukin-1 and TNF-a stimulate the expression
of adhesion molecules on endothelial cells and in-
crease the recruitment of neutrophils into the joints.
Neutrophils release elastase and proteases, which de-
grade proteoglycan in the superficial layer of carti-
lage.43 The depletion of proteoglycan enables immune
complexes to precipitate in the superficial layer of col-
lagens and exposes chondrocytes.44 Chondrocytes and
synovial fibroblasts release matrix metalloproteinases
when stimulated by interleukin-1, TNF-a, or activat-
ed CD4+ T cells. Matrix metalloproteinases, in par-
ticular stromelysin and collagenases, are enzymes that
degrade connective-tissue matrix and are thought to
be the main mediators of joint damage in rheumatoid
arthritis. In animals, activated CD4+ T cells stimu-
late osteoclastogenesis, and they may cause joint dam-
age independently of interleukin-1 and TNF-a in pa-
tients with rheumatoid arthritis.

Summary

Rheumatoid arthritis is initiated by CD4+ T cells,
which amplify the immune response by stimulating
other mononuclear cells, synovial fibroblasts, chon-
drocytes, and osteoclasts. The release of cytokines, es-

pecially TNF-a, interleukin-1, and interleukin-6, caus-
es synovial inflammation. Joint damage results from
the degradation of connective tissue by matrix metal-
loproteinases and the stimulation of osteoclastogene-
sis by activated CD4+ T cells. Clearly, there are many
possible therapeutic targets, but the inhibition of cy-
tokines would seem to offer an especially useful ap-
proach to suppressing inflammation and preventing
joint damage.

INHIBITION OF CYTOKINES

Given the complexity of cytokine interactions and
the multiplicity of cytokine targets, the effectiveness
and toxicity of cytokine-based interventions are dif-
ficult to predict. A variety of cytokine-based strategies
are being explored for the treatment of inflammatory
diseases. These include the neutralization of cytokines
(by soluble receptors or monoclonal antibodies), re-
ceptor blockade, and the activation of antiinflamma-
tory pathways by bioengineered versions of immuno-
regulatory cytokines (Fig. 3).

Neutralization of Cytokines

Soluble receptors have a physiologic role in neutral-
izing many cytokines, as exemplified by soluble TNF
receptors. TNF-a binds to TNF receptors on the sur-
face of many cells, including monocytes, macrophages,
T cells, synovial fibroblasts, osteoblasts, and endothe-
lial cells. There are two types of TNF receptors, p55
and p75, which are part of a large family of structur-
ally related cell-surface receptors.45,46 The cytoplasmic
domains of the p55 and p75 receptors are quite dif-
ferent,47 suggesting that they may activate different
signal-transduction pathways. The p75 receptor is
believed to have a primary role in stimulating the
proliferation of T cells and in suppressing TNF-a–
mediated inflammatory responses, whereas the p55
receptor appears to be critical in triggering host de-
fense and inflammatory responses.48,49

Soluble forms of both p55 and p75 are part of a
feedback loop that can modulate the inflammatory
action of TNF-a. The transmembrane domain of both
TNF receptors is susceptible to lysis by proteases, in-
cluding TNF-a–converting enzyme, leading to the
release of a soluble form of the receptor. Hence, both
types of receptor are present in body fluids. Soluble
TNF receptors are found in high concentrations in

Figure 2 (facing page). Pathogenesis of Rheumatoid Arthritis.
In the normal knee joint, the synovium consists of a synovial membrane (usually one or two cells thick) and underlying loose con-
nective tissue. Synovial-lining cells are designated type A (macrophage-like synoviocytes) or type B (fibroblast-like synoviocytes).
In early rheumatoid arthritis, the synovial membrane becomes thickened because of hyperplasia and hypertrophy of the synovial-
lining cells. An extensive network of new blood vessels is formed in the synovium. T cells (predominantly CD4+) and B cells (some
of which become plasma cells) infiltrate the synovial membrane. These cells are also found in the synovial fluid, along with large
numbers of neutrophils. In the early stages of rheumatoid arthritis, the synovial membrane begins to invade the cartilage. In estab-
lished rheumatoid arthritis, the synovial membrane becomes transformed into inflammatory tissue, the pannus. This tissue invades
and destroys adjacent cartilage and bone. The pannus consists of both type A and type B synoviocytes and plasma cells.
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Figure 3. Methods of Blocking the Activity of an Inflammatory Cytokine.
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the synovial fluid and serum of patients with rheu-
matoid arthritis.50 Nevertheless, an excess of TNF-a
relative to the concentration of soluble TNF recep-
tors prolongs joint inflammation.

Treating patients with recombinant soluble cyto-
kine receptors may help suppress inflammation. How-
ever, soluble receptors have short plasma half-lives,
and repeated doses would be required to neutralize
the effects of inflammatory cytokines. This limitation
can be circumvented by conjugating soluble receptors
with human Fc (a proteolytic fragment of IgG), which
can extend the half-lives of these molecules to approx-
imate those of immunoglobulin.51 Another alternative
is to polymerize TNF receptor or anti–TNF-a Fab'
with polyethylene glycol. This can reduce antigenic-
ity and prolong the half-life in circulation. The effi-
cacy of these constructs in patients with rheumatoid
arthritis is currently being investigated.

Antibodies against cytokines are another approach
to neutralizing cytokines. The type of antibody ap-
pears to be critical to its clinical efficacy. Murine
monoclonal antibodies are antigenic and induce the
production of antimouse antibodies in recipients.52

Chimeric and humanized monoclonal antibodies are
less immunogenic than murine monoclonal antibod-
ies, and they are therefore more suitable as therapeu-
tic agents.53

Receptor Antagonism

Blocking the ability of a receptor to bind its cyto-
kine is another strategy to interrupt signal transduc-
tion. This can be accomplished with either natural
receptor antagonists, such as interleukin-1–receptor
antagonist, or antibodies against cytokine receptors.
For such an approach to be successful, the amount
of antagonist must be large enough to bind the ma-
jority of receptors for long periods.

Activation of Antiinflammatory Pathways

In addition to natural cytokine antagonists and
soluble receptors, immunoregulatory cytokines such
as interleukin-10 and interleukin-4 can suppress in-
flammation.39,40,42 As is true for most cytokines, how-
ever, their effects are pleiotropic and not fully under-
stood. For instance, the treatment of synovial-fluid
macrophages with exogenous interleukin-10 increased
the expression of cell-surface and soluble TNF recep-
tors, an effect that could make cells more responsive
to TNF-a and its inflammatory effects.54 Furthermore,
because cytokines are low-molecular-weight proteins
or glycoproteins with short half-lives, maintaining
therapeutic serum concentrations of antiinflammato-
ry cytokines may be difficult and expensive. A poten-
tial solution would be to use gene therapy that would
lead to continued synthesis of therapeutic antiinflam-
matory cytokines in the joints. In animal models of
rheumatoid arthritis, the genes for interleukin-10 and
interleukin-4 have been transfected by viral vectors

into synovial fibroblasts in vitro. These fibroblasts were
subsequently injected back into the joints, where they
released the antiinflammatory cytokine, resulting in
the suppression of inflammation and destruction of
joints.55,56

CLINICAL TRIALS OF CYTOKINE 

INHIBITORS

Soluble Human Cytokine-Receptor Proteins

Etanercept

Etanercept is a fusion protein made up of two re-
combinant p75 soluble TNF receptors fused with
the Fc portion of human IgG1. The dimeric structure
of etanercept makes it approximately 1000 times as
efficient as the monomeric soluble p75 TNF receptor
at neutralizing TNF-a.57

In two placebo-controlled trials of 168 and 234 pa-
tients with rheumatoid arthritis, twice weekly subcu-
taneous injections of 25 mg of etanercept58,59 resulted
in significant improvement. The number of swollen
joints decreased by approximately 50 percent from
base line after six months of treatment.58 Treatment
with etanercept was well tolerated, and produced only
minor reactions at the site of the injection. Synovial bi-
opsies showed a statistically significant decrease in the
numbers of T cells and plasma cells and in the amount
of vascular-cell adhesion molecule 1 and the expres-
sion of interleukin-1 after one month of treatment.60

Long-term, open-label studies have indicated that the
efficacy of continued treatment with etanercept is sus-
tained for at least 33 months, and no major adverse
events have occurred.61 Furthermore, the combination
of etanercept and methotrexate was significantly more
effective than methotrexate alone in a placebo-con-
trolled trial of 89 patients with rheumatoid arthritis
who had had a partial response to methotrexate.62

Etanercept is also effective in patients with juvenile
rheumatoid arthritis.63 In a randomized, placebo-con-
trolled trial of 51 patients with juvenile polyarticular
rheumatoid arthritis, 0.4 mg of etanercept per kilo-
gram of body weight or placebo was injected subcu-
taneously twice weekly for four months or until a flare
of the disease occurred. The total number of joints
with active arthritis decreased by 58 percent from base
line, and the range of motion of affected joints was in-
creased by 80 percent.

In other studies, etanercept was better tolerated and
more effective than methotrexate in patients with ear-
ly rheumatoid arthritis.64 There was less radiographic
evidence of progression of rheumatoid arthritis in pa-
tients who were receiving etanercept than in patients
who were receiving methotrexate.64

Monoclonal Antibodies against Cytokines

Infliximab

Infliximab is a chimeric IgG1 antibody against
TNF-a. In a double-blind, placebo-controlled trial
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of 73 patients with rheumatoid arthritis, a single in-
travenous dose of 10 mg of infliximab per kilogram
rapidly reduced the number of swollen joints as well
as the serum concentration of C-reactive protein.65

Clinically significant improvement was evident with-
in a week after treatment was begun. Synovial-biopsy
specimens, obtained before and four weeks after the
beginning of treatment, showed significant reductions
in the number of T cells and in the tissue content of
vascular-cell adhesion molecule 1 and E-selectin.66

In another randomized, placebo-controlled trial of
101 patients with rheumatoid arthritis,67 infliximab
or placebo was given repeatedly, with or without
methotrexate. Antibodies against infliximab developed
in many patients after repeated treatment, but the
incidence was reduced by concomitant treatment with
methotrexate. Furthermore, a dose of 3 mg of inflix-
imab per kilogram in combination with methotrexate
was as efficacious as a dose of 10 mg per kilogram,
with or without methotrexate. This finding was con-
firmed in a randomized, placebo-controlled trial of
428 patients with rheumatoid arthritis, in which the
infliximab-treated patients had sustained clinical im-
provement for at least 30 weeks.68

Other Antibodies against TNF-a

D2E7 is a human antibody against TNF-a gener-
ated by phage-display technology,69 whereas nerelim-
omab is a humanized monoclonal antibody against
TNF-a that consists of the hypervariable regions of
a murine monoclonal antibody against TNF-a grafted
onto a human k light chain and an IgG4 heavy chain.70

Both these antibodies were effective in preliminary
randomized, placebo-controlled trials in patients with
rheumatoid arthritis.69,70

Cytokine-Receptor Blockers

Recombinant Interleukin-1–Receptor Antagonist

In a randomized, double-blind, placebo-controlled
trial of 472 patients with rheumatoid arthritis, treat-
ment with recombinant human interleukin-1–recep-
tor antagonist71 resulted in moderate clinical improve-
ment and decreased the rate of progression of erosions,
as assessed by radiography.72 Reactions at the injection
site were the most common adverse event. Recombi-
nant human interleukin-1–receptor antagonist is cur-
rently being tested in combination with methotrexate.

A drawback to the therapeutic use of interleukin-
1–receptor antagonist is its short (six-hour) half-life
in plasma,73 which necessitates frequent daily treatment
with high doses to maintain a therapeutic effect. This
problem is further compounded by the need for a
large (10- to 1000-fold) excess of interleukin-1–recep-
tor antagonist to block the effect of interleukin-1 in
vitro and in vivo.74 One way to circumvent these prob-
lems and achieve high local concentrations of inter-
leukin-1–receptor antagonist may be by the use of

gene therapy.75 In animals, synovial fibroblasts trans-
fected with the gene for human interleukin-1–recep-
tor antagonist and then reinjected into joints produced
interleukin-1–receptor antagonist in the synovium,
with consequent clinical improvement.76 A similar ex
vivo gene-transfer strategy was used to introduce the
gene for the interleukin-1–receptor antagonist into
the joints of three patients with rheumatoid arthritis
before they underwent total joint replacement. Sub-
sequent removal and analysis of joint tissue indicated
that this technique induced the intraarticular expres-
sion of the gene for the interleukin-1–receptor antag-
onist.75

Antibody against Interleukin-6 Receptor

An antibody against the receptor for interleukin-6
has shown efficacy in mice with collagen-induced ar-
thritis.77 A clinical trial of a humanized monoclonal
antibody against the interleukin-6 receptor, which is
theorized to have the same functional consequenc-
es as a monoclonal antibody against interleukin-6, is
currently under way.

Recombinant Interleukin-10 and Interleukin-4

Recombinant interleukin-1078 and interleukin-479

have been tested in patients with rheumatoid arthritis.
The clinical efficacy of the treatments has been disap-
pointing; the lack of efficacy may be due to the short
half-life of these substances.

CONCLUSIONS

Although the cause of rheumatoid arthritis still
eludes us, our improved understanding of the patho-
genesis of the disease has opened the door to innova-
tive therapies. By targeting molecules that are directly
involved in the pathogenesis of rheumatoid arthritis,
these therapies may be more efficacious and specific
and less toxic in the short and long term than standard
therapies. Radiologic evidence suggests that these new
therapies, such as anticytokine therapy, may slow dis-
ease progression. Finally, the success of anticytokine
therapy will also provide valuable insights into the ini-
tiation and progression of rheumatoid arthritis.
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