Case S2

A two year-old child who received standard immunizations (and not BCG1) presented with fever, cough, hepatosplenomegaly2 (enlarged liver and spleen) and diffuse lymphadenopathy.3 A chest X-ray was read as consistent with pneumonia. He was treated with clarithromycin,4 but failed to improve. Further laboratory studies revealed a white blood count of 25,000.5 Quantitative immunoglobulins were normal, as was the reduction of nitroblue tetrazolium (NBT) by polymorphonuclear leukocytes.6 A test for HIV was negative. Serologic testing for tetanus antitoxoid antibody showed a normal post-vaccination titer. A biopsy of a cervical lymph node revealed mild inflammation with no distinct granulomas; however, the smear was positive for acid-fast bacilli (AFB)7 and cultures grew several atypical mycobacteria, as did blood cultures. Therapy with rifabutin, azithromycin, ciprofloxacin, ethambutol, and amikacin was begun,8 which resulted in a modest improvement in fever and activity levels, and in weight gain. Due to the clinical presentation, an assessment for the presence of the interferon-\(\gamma\) (IFN-\(\gamma\)) receptor on the patient’s peripheral blood monocytes was made using flow cytometry (Fig. 1).

1Bacille Calmette-Guerin, a vaccine used in most of the world (but not the US) to help prophylax against tuberculosis (TB). Preparations of BCG are rarely standardized and its effectiveness is questionable.

2Enlarged liver and spleen

3Enlargement of most lymph nodes

4A macrolide antibiotic often used as empiric treatment for bacterial pneumonia (i.e., when the etiology of pneumonia is unknown)

5cells/\(\mu\)l

6Reduction of NBT results in the deposition of an insoluble colored product that is easily seen by light microscopy. It is a useful screening test for genetic defects in the NADPH oxidase.

7Acid-fast bacilli refers to the appearance of Mycobacteria and a few other species, such as Nocardia, following a histochemical stain that appears red under light microscopy.

8Broad-spectrum anti-mycobacterial therapy

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Level of expression of the IFN-\(\gamma\) receptor on the surface of peripheral blood monocytes from the patient (A) and a healthy control (B). The solid line indicates binding of the specific antibody; the dotted line indicates binding of the appropriate isotype-matched control antibody, and the dashed line indicates the binding of anti-CD14 antibodies.}
\end{figure}
Case S2, cont’d

Questions for Case S2:

(1) Describe the structure of the IFN-\(\gamma\) receptor. How does it signal gene expression?

(2) Describe the cellular components of a granuloma. Why did the lymph node biopsy grow atypical mycobacteria in the absence of granulomas?

(3) What is the principal leukocyte(s) that secretes IFN-\(\gamma\)? that responds to IFN-\(\gamma\)? What cytokines acts in concert with IFN-\(\gamma\) to promote macrophage activation?

(4) In mice that lack the inducible form of nitric oxide synthase (iNOS or NOS-2), susceptibility to lethal mycobacterial infection is increased. This phenotype is similar to the one seen in this individual. Based on this observation, what is the likely relationship between IFN-\(\gamma\) receptor deficiency and iNOS expression?

(5) Patients with AIDS develop a similar propensity to disseminated mycobacterial infections in the absence of mature granuloma formation. Why might this be the case?