ANTIBODY: STRUCTURE AND FUNCTION

Antigen Recognition

H Chain 440 amino acids
L Chain 220 amino acids
H chain 4 or 5 domains
L Chain 2 domains
Each domain has intradisulfide bridge of 90 amino acids
There are 5 classes of H chain
(IgG, IgM, IgA, IgD, and IgE)
There are two class of L chains
(Lambda and Kappa)

Hinge region

\[C_{H1} \]
\[C_{H2} \]
\[C_{L} \]

\[C_{H1} \]
\[C_{H2} \]

Antigen Elimination

Proteolytic cleavage by papain

Proteolytic cleavage by pepsin

©1999 Elsevier Science/Garland Publishing
The IgG Molecule

Fab arm waving
Fab elbow bend
Fab rotation
Fc wagging

Ig CONSTANT DOMAIN
Hypervariable (HV) or Complementarity Determining Regions (CDRs)

Degree of variability in V regions of the H chains. The degree of variability, at each different position, is graphically represented for the entire V region of Ig H chain. Note three areas of hypervariability CDR1, CDR2, and CDR3. Complementarity-determining Regions (CDR)
<table>
<thead>
<tr>
<th>Non-covalent forces</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic forces</td>
<td>Attraction between opposite charges</td>
</tr>
<tr>
<td></td>
<td>NH_2 COC</td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td>Hydrogen shared between electronegative atoms (N,O)</td>
</tr>
<tr>
<td></td>
<td>$\text{N} - \text{H} - \text{O} - \text{C}$</td>
</tr>
<tr>
<td>Van der Waals forces</td>
<td>Fluctuations in electron clouds around molecules oppose polarize neighboring atoms</td>
</tr>
<tr>
<td></td>
<td>$\delta^+ \leftrightarrow \delta^-$</td>
</tr>
<tr>
<td>Hydrophobic forces</td>
<td>Hydrophobic groups interact unfavorably with water and tend to pack together to exclude water molecules. The attraction also involves van der Waals forces</td>
</tr>
<tr>
<td></td>
<td>H_2O δ^+ δ^-</td>
</tr>
</tbody>
</table>

©1999 Elsevier Science/Garland Publishing
Antigen Recognition

Antibodies: Secreted or Transmembrane

TCR: Transmembrane
Evolutionary Conservation of Ig Domains:
The Ig Supergene Family of Surface Proteins

Ig Polypeptides Are Encoded by
Multiple Gene Segments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Constant</th>
<th>Light Chain POLYPEPTIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>J</td>
<td>Light Chain GENE SEGMENTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Constant</th>
<th>H.C.POLYPEPTIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>D</td>
<td>C_H1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_H2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_H3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>H.C. GENE SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Prototype Ig Gene: Murine Kappa

About 10 V\(_{\kappa}\) gene segments

4 J Gene Segment s

1 C\(_{\kappa}\) Gene Segment

Multiple V gene segments, distant from J and C

A few J gene segments

One C gene segment

Murine Ig Heavy Chain Gene Organization

~ 120 V Gene Segments

~20 Ds

4 Js

8 Constant Gene Segments

C\(_{\mu1}\) C\(_{\mu2}\) C\(_{\mu3}\) C\(_{\mu4/S}\) C\(_{\muM}\)
Human Ig Loci

λ light-chain locus
- L1
- L2
- L V₁-30
- J_λ1-5
- C_λ

κ light-chain locus
- L1
- L2
- L3
- L V_κ-40
- J_κ1-5
- C_κ

Heavy-chain locus
- L1
- L2
- L3
- L V_γ-50
- D_γ1-25
- J_γ1-6
- C_γ

Figure 4-4: Immunobiology, 6/e, (©Garland Science 2005)

α chain
- L V_α70-80
- J_α61
- C

β chain
- L V_β32
- D_β1
- J_β6
- C_β1
- D_β2
- J_β7
- C_β2

©2009 Elsevier Science/Garland Publishing
SUMMARY

1. Antibodies are comprised of 2 heavy and 2 light chain polypeptides.
2. N-terminal variable regions of antibodies recognize antigen and C-terminal heavy chain constant regions eliminate antigen.
3. Heavy and light chains are comprised of multiple Ig domains that have a characteristic beta pleated sheet structure.
4. Hypervariable amino acids in loops between beta sheets of variable regions contact antigen.
5. T cell receptors are comprised on one alpha and one beta chain and resemble Fab fragments of antibodies.
6. Genes encoding antibodies and TCRs are comprised of multiple V, D, J and C gene segments.