

IMMUNOGLOBULIN GENES UNDERGO <u>TWO</u> DNA REARRANGEMENTS

- 1. V(D)J Recombination: both light and heavy chains
- 2. Class switch recombination: heavy chains only

Heavy chain isotypes are generated by a second DNA rearrangement:

CLASS SWITCH RECOMBINATION (CSR)

CONSEQUENCES OF V(D)J RECOMBINATION

- Combinatorial diversity: # of possible combinations is the product of the # of recombining segments i.e. for mouse h.c.: 120×20×4=10⁴
- Junctional diversity at CDR3
 Deletion of bases at junctions
 N region additions at junctions
 P region additions at junctions
- Activates transcription of the rearranged gene
 Juxtaposition of intronic enhancers with V region
 promoters.
- Allows receptor editing to alter potentially self-reactive antibodies

	Immunoglobulin								
	lgG1	lgG2	lgG3	lgG4	IgM	IgA1	IgA2	IgD	IgE
Heavy chain	γ1	γ_2	γ_3	γ ₄	μ	α1	α_2	δ	e
Molecular weight (kDa)	146	146	165	146	970	160	160	184	188
Serum level (mean adult mg ml ⁻¹)	9	3	1	0.5	1.5	3.0	0.5	0.03	5 x 10 ⁻⁵
Half-life in serum (days)	21	20	7	21	10	6	6	3	2
Classical pathway of complement activation	++	+	+++	-	+++				
Alternative pathway of complement activation	-				-	+			
Placental transfer	+++	+	++	74	-			-	
Binding to macrophage and phagocyte Fc receptors	+		+	74	-	+	+	-	+
High-affinity binding to mast cells and basophils							-		+++
Reactivity with staphylococcal Protein A	+	+	74	+	-			-	

SUMMARY

- Ig genes undergo two DNA rearrangements which result in loss of DNA: VDJ recombination and class switch recombination. TCR genes undergo VDJ recombination only.
- VDJ recombination requires lymphocyte-specific RAG (recombination activating gene) proteins and ubiquitous double-strand break repair proteins.
- 3. VDJ recombination provides diversity thru recombinational mechanisms and junctional diversity; it also activates gene transcription.
- 4. CSR occurs in introns and requires AID (activation induced cytidine deaminase).
- CSR allows changes in the heavy chain isotype, leading to different antigen elimination properties of the expressed antibody.
- Defects in genes encoding RAG, AID and other factors cause human immune deficiency diseases.

V(D)J Recombination	CSR				
Join in exon	Join in intron				
RAGs required	RAGs Not required				
Repair enzymes	Repair enzymes				
Generates diversity Ag specificity	Changes isotype Ag elimination				
Random	Regulated by T cell signals				

1. Humans with mutations in gene products required for $V(D)\mathbf{J}$ recombination are immunodeficient:

RAG Various SCIDs, including Omenn's

syndrome

Artemis Radio-sensitive SCID

Ligase IV SCID with developmental deficiency

Humans with mutations affecting CSR have hyper IgM AID mutations and other mutations