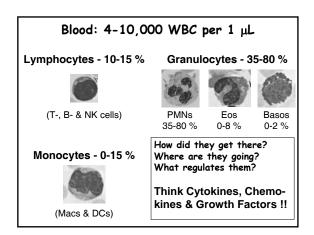
Lecture 11


T-cell Effector Mechanisms-II: Cytokine Secretion & T-cell Polarization

September 21, 2005

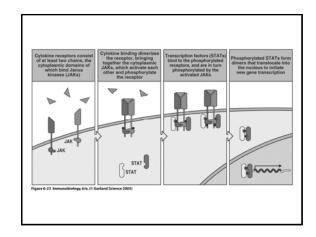
Chris Schindler cws4@columbia.edu

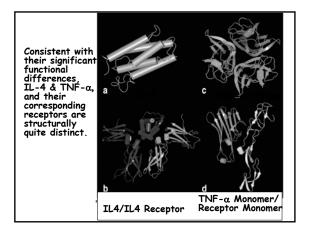
What do cytokines, chemokines and growth factors do?

- They direct the development, maturation, localization, interactions, activation and life span of immune cells.
- Thus they play an essential role in regulating both immunity adaptive and innate.

How many flavors regulate immunity?

- Growth Factors (e.g., CSF-1, SCF, RANKL, Flt3L)
- IL-1 Family (e.g., IL-1, IL-18 & "Toll-like")
- TNF Family (e.g., TNF- α , CD40L, FasL, LT- β , BAFF)
- TGF- β Family (e.g., TGF- β)
- Chemokines (e.g., CC and CXC families)
- Type I & II Cytokines (a.k.a.Hematopoietins or Four Helix Bundle (e.g., IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-15, GM-CSF, IFN-γ, IFN-α/β)
- · Also steroid hormones and prostaglandins

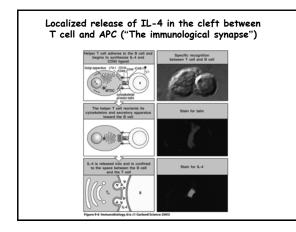

What are cytokines and chemokines?

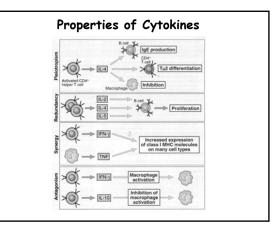

- Small (10-30 kDa), usually secreted and usually glycosylated peptides.
- They bind specific, high affinity (e.g., K_d of 10⁻¹⁰- 10⁻¹² M) receptors found on target cells.
- Expression of cytokines and their receptors is usually <u>tightly regulated</u> (i.e., temporally/ transiently and geographically).
- Cytokine receptors define the specific type of biological response cytokines stimulate.
- Other more anachronistic terms include monokines and lymphokines. The term interleukin (IL) is now commonly used (e.g., IL-1, IL-2, ...).

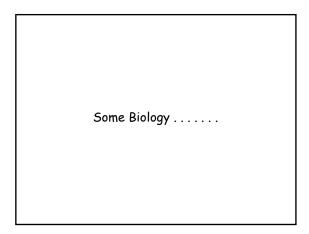
Cytokines & Chemokines can be grouped into functionally related Families

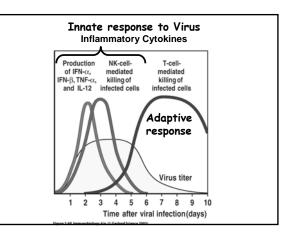
- There are significant functional <u>similarities</u> within each receptor family. The same is true for corresponding ligands (see summary).
- There are important functional <u>differences</u> <u>between</u> between receptor families (see summary).

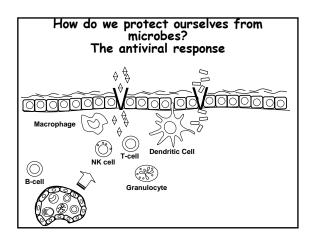
Table 11-2. Signal Transduction Mechanisms of Cytokine Receptors			
Signal transduction pathway	Cytokine receptors using this pathway	Signaling mechanism	
JAK/STAT pathway	Type I and type II cytokine receptors	JAK-mediated phosphorylation and activation of STAT transcription factors (see Box 11-2)	
TNF receptor signaling by TRAFs	TNF receptor family: TNR-RII, CD40	Binding of adapter proteins, activation of transcription factors (see Box 11–1)	
TNF receptor signaling by death domains	TNF receptor family: TNF-RI, Fas	Binding of adapter proteins, caspase activation (see Box 11-1)	
Receptor-associated tyrosine kinases	M-CSF receptor, stem cell factor receptor	Intrinsic tyrosine kinase activity in receptor	
G protein signaling	Chemokine receptors	GTP exchange and dissociation of $G\alpha \cdot GTP$ from G $\beta\gamma$, $G\alpha \cdot GTP$ activates various cellular enzymes	

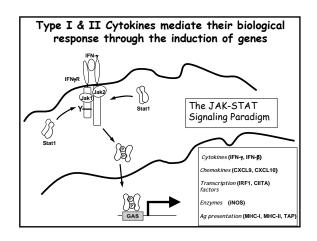


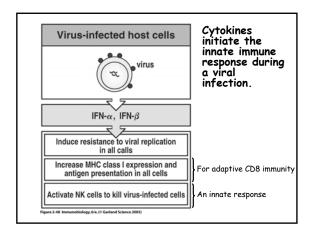


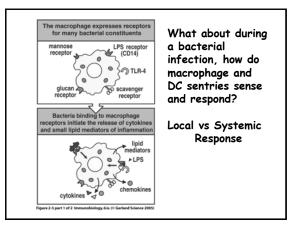

General functional properties of Cytokines and Chemokines

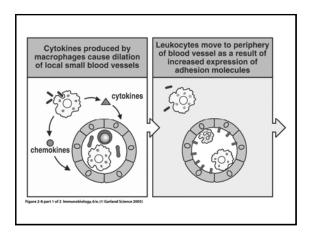

- Usually stimulate transient responses.
- Function at three ranges:

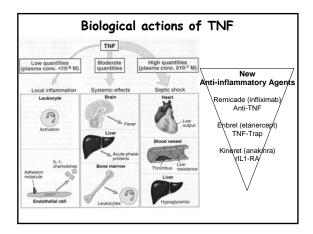

 - Autocrine "self"
 Paracrine adjacent cells
 Endocrine through circulatory system
- Pleitropism one ligand activate numerous types of responses (e.g., differentiation, growth & activation).
- Redundancy two or more ligands exhibit functional overlap.
- Synergy two or more ligands synergize to mount a single response.
- Antagonsism two or more cytokines mediating opposite responses • to either limit a response or achieve balance (e.g. Feedback loops).

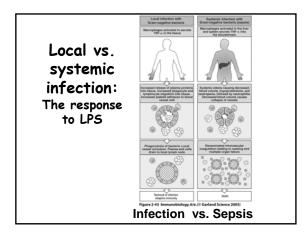


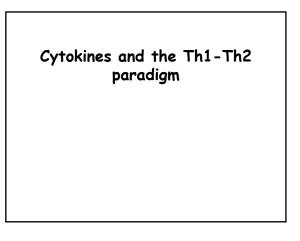


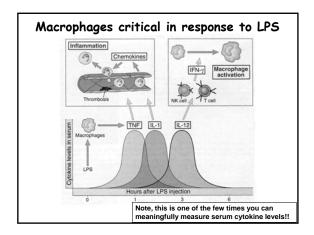


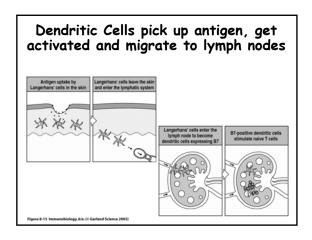


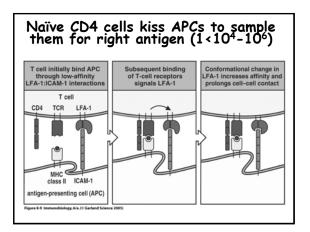


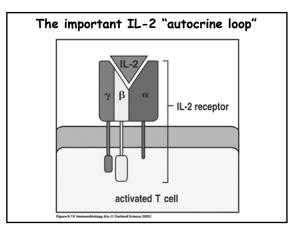


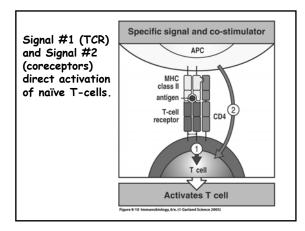


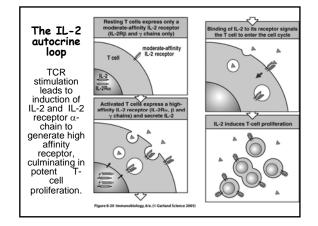


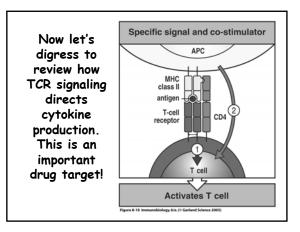


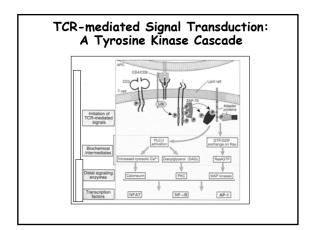


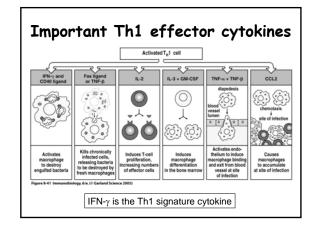


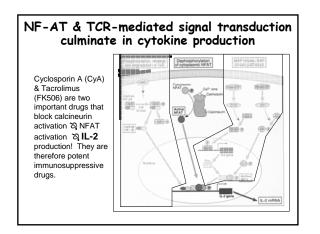


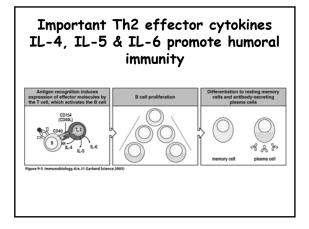


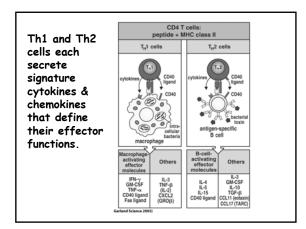


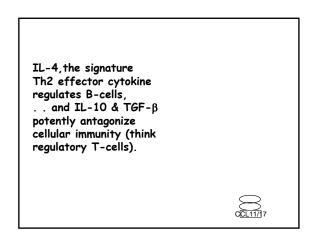


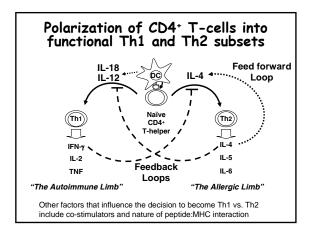


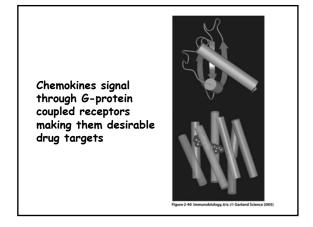


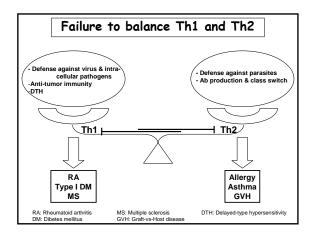


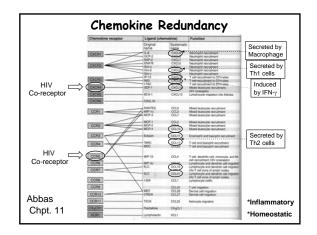


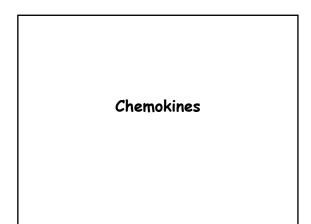


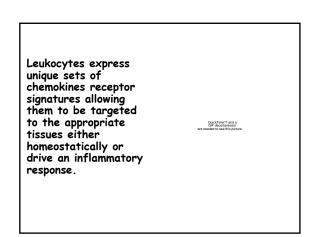


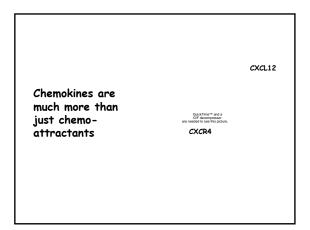












Homeostatic targeting of lymphocytes and APCs in the spleen		
	Ogishtmen" and a Gif decompressor are needed to see this pricture.	
Cell Chemokine receptor DC CCR7 naïve T CCR7 naïve B CXCL5	Chemokine sensed ELC, SLC ELC, SLC BLC	

Cytokines you should know		
Type I & II Cytokine Receptors (JAK-STAT)		
Toll (TLR) /IL- Receptors (NFκB)	1_IL-1 -Potent activator of inflammation & innate immunity TLR -Potent activators of innate and adaptive immunity	
TNF Related Receptors (NFkB vs. Caspas	CD40L - T-cell help (survival/proliferation) to B-cells	
TGF-β Receptors	-{TGF-β -Antagonizes cellular immunity and promotes wound healing	
Chemokine Receptors (GPCRs*)	Chemokines (see Fig. 11.6) Inflammatory (e.g., CCL11, CCL17, CXCL2, CXCL8/9/10) Non-inflammatory (i.e. homeostatic; e.g., CCL19, CCL21,CXCL-12, CXCL-13, S-1P)	
*G-P	rotein Coupled Receptors -Good drug targets	

Of Note

•Two chemokine receptors serve as co-receptors for HIV infection (CXCR4 and CCR5)