

What are cytokines and chemokines?

- Small (10-30 kDa), usually secreted and usually glycosylated peptides.
- They bind specific, high affinity (e.g., K_d of 10⁻¹⁰-10⁻¹² M) receptors found on target cells.
- Expression of cytokines and their receptors is usually <u>tightly regulated</u> (i.e., temporally/ transiently and geographically).
- Cytokine receptors define the specific type of biological response cytokines stimulate.
- Other more anachronistic terms include monokines and lymphokines. The term interleukin (IL) is now commonly used (e.g., IL-1, IL-2, ...).

What do cytokines, chemokines and growth factors do?

- They direct the development, maturation, localization, interactions, activation and life span of immune cells.
- Thus they play an essential role in regulating both immunity adaptive and innate.

How many flavors regulate immunity?

- Growth Factors (e.g., CSF-1, SCF, RANKL, Flt3L)
- IL-1 Family (e.g., IL-1, IL-18 & "Toll-like")
- TNF Family (e.g., TNF- α , CD40L, FasL, LT- β , BAFF)
- TGF- β Family (e.g., TGF- β)
- Chemokines (e.g., CC and CXC families)
- Type I & II Cytokines (a.k.a.Hematopoietins or Four Helix Bundle (e.g., IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-15, GM-CSF, IFN-γ, IFN-α/β)
- Also steroid hormones and prostaglandins

Cytokines & Chemokines can be grouped into functionally related Families

- There are significant functional <u>similarities</u> within each receptor family. The same is true for corresponding ligands (see summary).
- There are important functional <u>differences</u> <u>between</u> between receptor families (see summary).

Signal transduction pathway	Table 11-2. Signal Transduction Mechanisms Cytokine receptors using this pathway	s of Cytokine Receptors Signaling mechanism	
JAK/STAT pathway	Type I and type II cytokine receptors	JAK-mediated phosphorylation and activation of STAT transcription factors (see Box 11–2)	
TNF receptor signaling by TRAFs	TNF receptor family: TNR-RII, CD40	Binding of adapter proteins, activation of transcription factors (see Box 11-1)	
TNF receptor signaling by death domains	TNF receptor family: TNF-RI, Fas	Binding of adapter proteins, caspase activation (see Box 11–1)	
Receptor-associated tyrosine kinases	M-CSF receptor, stem cell factor receptor	Intrinsic tyrosine kinase activity in receptor	
G protein signaling	Chemokine receptors	GTP exchange and dissociation of $G\alpha \cdot GTP$ from $G\beta\gamma$, $G\alpha \cdot GTP$ activates various cellular enzymes	
Receptor-associated tyrosine kinases		Intrinsic tyrosine kinase activity in rece GTP exchange and dissociation of $G\alpha$ from G $\beta\gamma$, G α · GTP activates various	

General functional properties of Cytokines and Chemokines

- Usually stimulate transient responses.
- Function at three ranges:
 - Autocrine "self"
 - Paracrine adjacent cells
 - Endocrine through circulatory system
- **Pleitropism** one ligand activate numerous types of responses (e.g., differentiation, growth & activation).
- Redundancy two or more ligands exhibit functional overlap.
- **Synergy** two or more ligands synergize to mount a single response.
- **Antagonsism** two or more cytokines mediating opposite responses to either limit a response or achieve balance (e.g. Feedback loops).

	Cytokines you should know
Type I & II Cytokine Receptors (JAK-STAT)	$\begin{cases} \textbf{IL-2} - Th1 cytokine \Rightarrow \textbf{T-cell proliferation} \\ \textbf{IL-4} - Th2 cytokine \Rightarrow \textbf{B-cell proliferation}; Th2 polarization \\ \textbf{IL-6} - Th2 cytokine \Rightarrow \textbf{B-cell proliferation}; Plasma cell growth \\ \textbf{IL-10} - Th2 cytokine \Rightarrow antagonizes cellular immunity \\ \textbf{IL-12} - DC cytokine \Rightarrow drives Th1 polarization \\ \textbf{IFN-}\gamma - Th1 cytokine \Rightarrow drives inflammation; Mac. Activation; DTH \\ \textbf{JFN-}\alpha - All cells make this antiviral cytokine \end{cases}$
Toll (TLR) /IL- Receptors (NFκB)	1 IL-1 -Potent activator of inflammation & innate immunity TLR -Potent activators of innate and adaptive immunity
TNF Related Receptors (NFκB vs. Caspas	TNF -Potent activator of inflammation & innate immunity (arthritis) CD40L - T-cell help (survival/proliferation) to B-cells FasL -Induces cell death: to achieve negative selection; to terminate an immune response
TGF-β Receptors	- TGF- β -Antagonizes cellular immunity and promotes wound healing
Chemokine Receptors (GPCRs*)	Chemokines (<i>see Fig. 11.6</i>) Inflammatory (e.g., CCL11, CCL17, CXCL2, CXCL8/9/10) Non-inflammatory (i.e. homeostatic; e.g., CCL19, CCL21,CXCL-12, CXCL-13, S-1P)
*G-P	rotein Coupled Receptors -Good drug targets