Types of Grafts

- Autologous (self)
 - e.g., BM, peripheral blood stem cells, skin, bone
- Syngeneic (identical twin)
- Allogeneic (another human except identical twin)
- Xenogeneic (one species to another)
Rejection

- First Set Rejection
 - Skin graft in mice 7-10 days

- Second Set Rejection
 - Skin graft in mice in 2-3 days

Mechanisms

- Foreign alloantigen recognition
- Memory lymphocytes (adaptive immunity)
- Can be adoptively transferred

MHC Restricted Allograft Rejection
First & Second Allograft Rejection

AlloAntigen Recognition

- Major Histocompatibility Complex (MHC)
 - Class I HLA A, B, C bind to TCR on CD8 T-Cell
 - Class II DR, DP, DQ bind to TCR on CD4 T-Cell
 - Most polymorphic genes in human genome
 - Co-dominantly expressed

- Direct presentation (Donor APC)
 - Unprocessed allogeneic MHC

- Indirect presentation (Host APC)
 - Processed peptide of allogeneic MHC
Map of Human MHC

T-Cell Recognition of Peptide-MHC Complex
Direct and Indirect AlloAntigen Recognition

Direct allore cognition

- Donor dendritic cell
- Donor MHC + peptide
- Recipient CD4+ T cell

Predominant role in acute rejection

Indirect allore cognition

- Recipient dendritic cell
- Recipient MHC + allopeptide derived from processed donor MHC
- Provides B-cell help for antibody production
- Important in chronic graft damage
- Suggested in activation of Treg

T-Cell Anergy vs T-Cell Activation

Resting (costimulator-deficient) APC

- Naive T cell

No response or anergy

Activation of APCs by microbes, innate immune response

Activated APCs: increased expression of costimulators, secretion of cytokines

- B7, CD28
- Cytokines (e.g., IL-12)

Effector T cells

T cell proliferation and differentiation

Antigen recognition

T cell response
Antigen Recognition &
Immunological Synapse

Mixed Lymphocyte Reaction
(MLR)

- **Definition & Mechanism**
 - *In vitro* test of T-cell regulation of allogeneic MHC
 - Stimulators (donor-irradiated mononuclear cells)
 - Responders (recipient mononuclear cells)
 - Measure proliferative response of responders (tritiated thymidine incorporation)

- **Requirements**
 - Can be adoptively transferred
 - Require co-stimulation
 - Require MHC
 - Require Class I differences for CD8 T-cell response
 - Require Class II differences for CD4 T-cell response
Mixed Lymphocyte Reaction (MLR)

Pathological Mechanism of Rejection

Solid Organ
- **Hyperacute**
 - Minutes to hours
 - Preexisting antibodies (IgG)
 - Intravascular thrombosis
 - Hx of blood transfusion, transplantation or multiple pregnancies

- **Acute Rejection**
 - Few days to weeks
 - CD4 + CD8 T-Cells
 - Humoral antibody response
 - Parenchymal damage & inflammation

- **Chronic Rejection**
 - Chronic fibrosis
 - Accelerated arteriosclerosis
 - 6 months to yrs
 - CD4, CD8, (Th2)
 - Macrophages

Bone Marrow/PBSC
- Not Applicable

- **Primary Graft Failure**
 - 10 – 30 Days
 - Host NK Cells
 - Lysis of donor stem cells

- **Secondary Graft Failure**
 - 30 days – 6 months
 - Autologous T-Cells
 - CD4 + CD8
 - Lysis of donor stem cells
Immune Mechanisms of Solid Organ Allograft Rejection

Hyperacute, Acute, Chronic Kidney Allograft Rejection
Mechanisms of Acute Allograft Rejection

- **ABO Compatible**
 - Prevent hyperacute rejection in solid organs
 - Prevent transfusion reaction in BM/PBSC
- **MHC allele closely matched**
- **Calcineurin inhibitors**
 - Cyclosporine binds to Cyclophilin
 - Tacrolimus (FK506) binds to FK Binding Proteins (FKBP)
 - Calcineurin activates Nuclear Factor of Activated T-Cells (NFAT)
 - NFAT promotes expression of IL-2
- **IMPDH Inhibitors (Inosine Monophosphate Dehydrogenase)**
 - Mycophenolate Mofetil (MMF)
 - Inhibits guanine nucleotide synthesis
 - Active metabolite is Mycophenolic acid (MPA)

Prevention & Treatment of Allograft Rejection
Prevention & Treatment of Allograft Rejection

- Inhibition of mTOR
 - Rapamycin binds to FKBP
 - Inhibits mTOR
 - Inhibits IL-2 signaling

- Antibodies to T-Cells
 - OKT3 (Anti-CD3)
 - Daclizumab (Anti-CD25)

- Corticosteroids
 - Prednisone/Solumedrol
 - Inhibits Macrophage Cytokine Secretion

- Anti-inflammatory
 - Infliximab (Anti-TNF-α Antibody)

- Blocks B7 Co-Stimulation
 - CTLA-4-Ig
 - Inhibits T-cell Activation
 - Induces Tolerance

- Block CD40 Ligand Binding
 - Anti CD40 Ligand
 - Inhibits Macrophage & Endothelial Activation

Incidence of Renal Allograft Survival in Influenced by HLA Matching

![Graph showing the incidence of renal allograft survival influenced by HLA matching.](image)
Mechanism of T-Cell Activation vs Tolerance

Immunological Tolerance

- Immunological specific recognition of self antigen by specific lymphocytes
- Central tolerance (Thymus-derived)
 - Negative selection of autoreactive T-Cells
 - Regulation of T-Cell development
- Peripheral Tolerance
 - Clonal anergy (Inadequate co-stimulation)
 - Deletion (Activation-induced cell death)
 - Regulatory / Suppressor Cells (Inhibit T-Cell activation / proliferation)
Central T-Cell Tolerance Mechanisms (Deletion and Regulatory T-Cells)

Mechanism of T-Cell Inactivation (CTLA-4/B7 Interaction)
Mechanism of T-Cell Inhibition (Regulatory T-Cells)

General Indications of Blood and Marrow Transplantation

- Dose intensity for malignant tumor (DI)
- Graft vs Tumor (GVT)
- Gene replacement
- Graft vs Autoimmune (GVHI)
- Gene therapy
- Marrow failure
Specific Indications (Pediatric)

Malignant
- Leukemia
- Solid Tumors
- Lymphomas

Non-Malignant
- Marrow Failure
- Metabolic Disorders
- Hemoglobinopathy
- Histiocytic
- Immunodeficiency
- Autoimmune
Conditioning Therapy

- **Myeloablative – TBI Based**
- **Myeloablative - Non TBI Based**
- **Non-Myeloablative**

Engraftment

<table>
<thead>
<tr>
<th>Type</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloid</td>
<td>Absolute neutrophil count ≥ 500/mm³ x 2 days after nadir</td>
</tr>
<tr>
<td>Platelet</td>
<td>Platelets ≥ 20 k/mm³ x 7 days untransfused after nadir</td>
</tr>
</tbody>
</table>

Chimerism (Allogeneic)

- **Fluorescence in situ Hybridization (FISH)** (Sex mismatch)
- **VNTR** (Molecular)
Complications (Acute)

- Graft failure (GF)
- Graft vs Host Disease (GVHD)
- Mucositis
- Veno-occlusive disease (VOD)
- Hemorrhagic cystitis
- Infections
- Persistent and/or recurrent disease

Essential Components Required for GVHD

- Immuno-incompetent host
- Infusion of competent donor T-cells
- HLA disparity between host and donor
Graft vs Host Disease

<table>
<thead>
<tr>
<th>Type</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>Day 0 – 7</td>
</tr>
<tr>
<td>Acute</td>
<td>Day 7 – 100</td>
</tr>
<tr>
<td>Chronic</td>
<td>Day 100 ≥</td>
</tr>
</tbody>
</table>

Acute Graft vs Host Disease

Dermal (Skin):
- Maculopapular
- Palms / Soles
- Pruritic ±
- Cheeks / Ears / Neck / Trunk
- Necrosis / Bullae

Hepatic:
- Hyperbilirubinemia
- Transaminemia

Gastrointestinal:
- Diarrhea
- Abdominal pain
- Vomiting
- Nausea
Risk Factors of GVHD

- HLA disparity
 6/6 > 5/6 > 4/6
- Allo stem cell source
 MRD > UCB > UBM
- Donor Age
- Sex incompatibility
- CMV incompatibility
- Immune suppression

Common Prophylactic Immune Suppressants

- Methotrexate (MTX)
- Cyclosporine (CSP)
- Prednisone (PDN)
- Tacrolimus (FK506)
- Mycophenolate Mofetil (MMF)
- Anti Thymocyte Globulin (ATG)
- Alemtuzumab (Campath)
- T-Cell Depletion
Risk of Acute GVHD and HLA Disparity

Chronic GVHD

- **Skin:** Rash (lichenoid, sclerodermatous, hyper/hypo pigmented, flaky), Alopecia
- **Joints:** Arthralgia, arthritis, contractures
- **Oral/Ocular:** Sjogren’s Syndrome
- **Hepatic:** Transaminemia, hyperbilirubinemia, cirrhosis
- **GI:** Dysphagia, pain, vomiting, diarrhea, abdominal pain
- **Pulmonary:** Bronchiolitis obliterans (BO), Bronchiolitis obliterans Organizing Pneumonia (BOOP)
- **Hematologic/Immune:** Cytopenias, dysfunction
- **Serositis:** Pericardial, pleural
• First set donor tissue rejection from a non-identical MHC recipient is a primary adaptive immune response

• Second set donor tissue rejection for a non-identical MHC recipient involves memory antigen host T & B cells

• Alloantigen antigen direct and indirect presentation involves donor and host APC, respectively

• T-cell activation & proliferation requires immunological synapse with TCR/MHC and co-simulating ligands & receptors

• Tissue rejection maybe hyperacute (preexisting Ab) acute (days to weeks) and/or chronic (months to years)

• Allogenic stem cell transplantation may result in hyperacute (1-7d), acute (7-10d) and/or chronic (100d – 5yr) GVHD.