

Timeline

- 1903 Maurice Arthus
 Described a stereotypical response in rabbits following
 - of protein antigens - The response, characterized by local erythema, induration, hemorrhage and necrosis became known as the "Arthus Reaction"

repeated intradermal injection

Timeline

•1906 - Clemens von Pirquet and Bela Schick -Coined the term "serum sickness" to

describe strange systemic symptoms suffered by some patients weeks after receiving diphtheria or tetanus anti-toxin horse serum

-Postulated for the first time that these hypersensitivity reactions might be the product of immune response -Named these responses "allergic" from the Greek *allos ergos*, altered reactivity.

Timeline •1902 - Charles Richet and

Paul Portier -Set sail on the yacht of the Prince of Monacco to study the effects of

Monacco to study the effects of marine toxins in mammals -Attempted to protect dogs from the

effects of toxins by innoculating them at low doses

-Re-exposure to innocuous doses resulted in a rapid shock and suffocation

-Coined the term "ana-phylaxis" to emphasize its antithesis to the familiar "prophylaxis"

Definitions

·Hypersensitivity:

-Broadest (Abbas) - Disorders caused by immune responses

- -Dysregulated response to foreign antigen
- -Failure of tolerance to self-antigen

_Practical - Used clinically to refer to aberrant or excessive immune responses generated against foreign antigens, although the same immune processes apply in many autoimmune disease

Allergy:

-Symptoms elicited by encounter with foreign antigen in a previously sensitized individual

•Symptoms frequently are localized to the anatomical site of antigen exposure:				
Site of Exposure	Syndrome	Common Allergens	Symptoms	
Respiratory	Allergic Rhinitis		Nasal Pruritis Rhinorrhea Congestion	
Mucosa	Asthma	AN AND	Bronchospasm Chronic Airway Inflammation	
G.I. Mucosa	Food Allergy		Cramping Vomit/Diarrhea Hives Anaphylaxis	

Type I (Immediate) Hypersensitivity

Antigens:

Classically exogenous, as opposed to "self" (autoimmune)
 Contact via mucous membranes and at low dose appears to favor type I sensitization

Reactions:

- Occur within seconds-minutes of exposure
- Severity ranges from irritating to fatal
- Immune Effect
 - Initial antigen contact leads to IgE production
 - On re-exposure, antigen-specific IgE initiates the reaction

Genetics of Atopy

•Complex, multigenic heritability. Candidate genes:

-Chrom. 11q - β-subunit of the high affinity Fc_εRI

-Chrom. 5q - Cytokine cluster: IL-3, IL-4, IL-5, IL-9, IL-13

-TIM (T-cell, Ig domain, Mucin domain) - surface -protein, variation assoc. with IL-4/IL-13 prod. -IL-12 p40 subunit (assoc. with asthma and AD)

·Variation in IgE response to specific allergens is associated with MHC II genetics

-DRB1*1501 is associated with IgE responses to specific ragweed pollen proteins

Allergy: Sensitization Phase

- Serum IgE produced by plasma cells has a short T_{1/2} (serum T_{1/2} IgG≈30 days; for IgE≈2 days)
- Rapidly taken up by Fc₆RI on tissue mast cells and circulating basophils

Allergy Epidemic

•Type I Hypersensitivity diseases, including asthma and allergic rhinitis, have been increasing in prevalence in the economically "advantaged" parts of the world for 30 years

-The "hygiene hypothesis" attributes increased allergic disease rates to generally decreasing microbial exposure in early life which would normally provide a Th1-promoting effect

- -Neonatal bias: \downarrow IL-12 (DC) and \downarrow IFN- γ (T cells)
- -Birth order: $\mathop{\downarrow}\!\mathsf{allergy}$ rates among 3rd- and 4th-born children -Protective effect of day care

1990 - EastWest Berlin immediately after the wall fell: East had →vaccination rates, ↑prev. childhood infection, but ↓'ed asthma -Hx of measles or HAV infection, or +PPD ▲↓allergy rates

Allergy: Effector Phase

•Early Phase Response: within seconds-minutes -IgE crosslinking by antigen A release of preformed mediators

-histamine A smooth muscle constriction, mucous secretion, ¹vascular permeability, [↑]GI motility, sens. nerve stimulation

Allergy Epidemic

•Weighing against the Hygiene Hypothesis:

-Despite this epidemiologic data, some evidence is hard to

-Previous infection with helminths, which generates a strong Th2 response, is also associated with protection against allergy

--Early life exposure to pathogens is also associated with decreased risk of autoimmune disease (e.g., type I diabetes), a classic Th1mediated condition

-Revised hygiene hypothesis - early life exposure to microbial pathogens influences the balance of immune responsive vs. immune modulating influences

Allergy: Effector Phase

•Early Phase Response: within seconds-minutes -IgE crosslinking by antigen ▲ release of preformed mediators

-histamine \blacktriangle smooth muscle constriction, mucous secretion, \uparrow vascular permeability, \uparrow GI motility, sens. nerve stimulation

- - of pathogen entry
 - ↑Lymph flow from peripheral sites to lymph node
- ↑G.I. motility ▲ favors expulsion of G.I. pathogens
- · Important role in parasite clearance
 - c-kit^{-/-} mice have no mast cells $\land \uparrow$ susceptibility to trichinella, strongyloides
 - Eosinophil depletion (Ab-mediated) ▲↑severity of schistosomal infection

Type I Sensitivity in Allergy

•Type I Hypersensitivity mediates:

- Allergic Rhinitis/conjunctivitis (Hayfever)
- Asthma
- Food/Medication reactions
- Contact urticaria
- Some forms of eczema
- Anaphylaxis food, bee sting, drug, exercise-induced

Type II Hypersensitivity: Antibody (Ab) Mediated

- Target-specific IgM and IgG mediate damage
- Targets:
 - Self-molecules altered by foreign antigen ▲ neo-epitope
 - -penicillin conjugates to RBC surface proteins A new penicilloated-protein serves as a target for IgM/IgG A intravascular hemolysis
 - Self-molecules unaltered = breaking of tolerance
 - -Group A Strep pharyngitis yields Ab's to the Strep M protein A Ab's cross react with cardiac muscle and valves A scarring

Type I Sensitivity in Allergy

Documenting allergic sensitivity: skin testing

-Allergenic extract (airborne, food, venom) is introduced by prick or injection intracutaneously

-Sensitization is evident within 15-20 minutes as a wheal/flare at the allergen introduction site

Type II Hypersensitivity: Ab Functions

•The mechanisms of type II hypersensitivity are exactly the those of normal Ab function, plus some:

Ab Function	Target	Result
Opsonization	Platelet surface proteins	Splenic clearance, thrombocytopenia
Neutralization	Acetylcholine receptor	Myasthenia Gravis
ADCC	Glomerular basement membrane proteins	Goodpasteur's Disease
C' Fixation	Penicilloyl-RBC protein conjugates	Hemolytic anemia
Non-Physiologic	TSH receptor	Grave's Disease

Immunology Wars

•Epic Immunologic Battle: 1870-1950

- "Humoralists" (France): Hypersensitivity is mediated by serum factors
- VS.
- "Cellularists" (Germany): Hypersensitivity is mediated by phagocytes
- •By 1915, the Humoralists appeared to have won
- Hay fever, asthma, anaphylaxis
- Drug-induced hemolysis
- Arthus reaction, serum sickness

Delayed Type Hypersensitivity

- Group of related responses to antigen, all dependent on cell-mediated immunity
- Although prior sensitization is required, reactions occur over 1-3 days following reexposure
- T cells: necessary and sufficient to elicit the reaction
- Athymic subjects (animal or human) are not sensitizable
- T cell depletion (via anti-T cell Ab's) reverses sensitization
- Transfer of purified T cells confers sensitization

Type IV Hypersensitivity: Tuberculin Reaction

•1892 - Robert Koch

-Discoverer of tubercle bacillus

-Attempted to prevent TB by inoculation with bacillus extract

-Unfortunately:

-No protection for naive individ.

-Reactivated disease in exposed

-But: intradermal injection of bacillus extract in previously exposed individuals resulted in a stereotypic indurated lesion within 48-72 hours

Varieties of DTH Reactions Clinical Appearance Reaction Time Site/ Antigen Histology Туре cells folk 48-72 hours Contact Eczema hages, edema of the epidermis hols., poison ivy heavy metals 48-72 hours Local Induration Intradermal: PPD, candida mumps Tuberculir Skin, viscera: ersistent Ag (TB leprosy) Hardened Nodular 21-28 Macrophages, epithelioid giant cells, fibrosis Granuloma days

Common to all DTH Reactions

•Histology of the DTH reaction:

- -T Cells CD4 (Th1); some forms CD8
- -Macrophages/monocytes
- -Basophils
- _Fibrin
- -If persistent antigen: multinucleated giant cells; granulomata
- •Cytokines found at the site of a DTH reaction:
- -IL-2
- _IFN-γ
- -TNF-α

•Immune-mediated adverse reactions occur a a rate of 1 per 100 administrations				
Туре	Mechanism	Example		
I	IgE-mediated	Acute anaphylaxis, urticaria		
Ш	C'-mediated cytolysis Opsonization	Hemolytic anemia Thrombocytopenia		
Ш	Immune Complex Damage	Serum sickness Drug fever, Vasculitis		
	T O all and distant	Contrast constituity		

Hypersensitivity Progression

• Antigen-specific responses may progress from one type of hypersensitivity to another:

- Latex allergy among healthcare workers
 - -Initial reaction is typically a contact sensitivity (type IV reaction)
- -With recurrent latex contact, sensitivity progresses to latex-specific IgE, imparting risk of anaphylaxis
- p-aminobenzoic acid (PABA), the active ingredient in many sunscreens, can act as a contact sensitizer
 - -PABA DTH reactivity is associated with ^'ed risk of immediate type hypersensitivity to local anesthetics (e.g., benzocaine) due to cross-reactivity of the aromatic core