Hypersensitivity

Stephen Canfield, MD PhD
Assistant Professor
Division of Pulmonary, Allergy
and Critical Care Medicine

Timeline

• 1893 - Emil von Behring
 - Working with diphtheria toxin
 noted that animals would suffer enhanced responses and even death following a second dose of toxin too small to injure normal untreated animals
 - Described this phenomenon as “hypersensitivity”

Timeline

• 1902 - Charles Richet and Paul Portier
 - Set sail on the yacht of the Prince of Monaco to study the effects of marine toxins in mammals
 - Attempted to protect dogs from the effects of toxins by innoculating them at low doses
 - Re-exposure to innocuous doses resulted in a rapid shock and suffocation
 - Coined the term “ana-phylaxis” to emphasize its antithesis to the familiar “prophylaxis”

Timeline

• 1903 - Maurice Arthus
 - Described a stereotypical response in rabbits following repeated intradermal injection of protein antigens
 - The response, characterized by local erythema, induration, hemorrhage and necrosis became known as the “Arthus Reaction”
Timeline

• 1906 - Clemens von Pirquet and Bela Schick
- Coined the term "serum sickness" to describe strange systemic symptoms suffered by some patients weeks after receiving diphtheria or tetanus anti-toxin horse serum
- Postulated for the first time that these hypersensitivity reactions might be the product of immune response
- Named these responses "allergic" from the Greek *allos ergos*, altered reactivity.

Definitions

• Hypersensitivity:
 - Broadest (Abbas) - Disorders caused by immune responses
 - Dysregulated response to foreign antigen
 - Failure of tolerance to self-antigen
 - Practical - Used clinically to refer to aberrant or excessive immune responses generated against foreign antigens, although the same immune processes apply in many autoimmune disease

• Allergy:
 - Symptoms elicited by encounter with foreign antigen in a previously sensitized individual
Manifestations of Hypersensitivity

• Symptoms frequently are localized to the anatomical site of antigen exposure:

<table>
<thead>
<tr>
<th>Site of Exposure</th>
<th>Syndrome</th>
<th>Common Allergens</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Mucosa</td>
<td>Allergic Rhinitis</td>
<td>Nasal Pruritis, Rhinorrhea, Congestion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asthma</td>
<td>Bronchospasm Chronic Airway Inflammation</td>
<td></td>
</tr>
<tr>
<td>G.I. Mucosa</td>
<td>Food Allergy</td>
<td>Cramping, Vomits/Diarrhea, Hives, Anaphylaxis</td>
<td></td>
</tr>
</tbody>
</table>

Manifestations of Hypersensitivity

<table>
<thead>
<tr>
<th>Site of Exposure</th>
<th>Syndrome</th>
<th>Common Allergens</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Contact Urticaria</td>
<td></td>
<td>Hives, Pruritis</td>
</tr>
<tr>
<td></td>
<td>Contact Dermatitis</td>
<td></td>
<td>Rash, Pruritis</td>
</tr>
<tr>
<td>Blood</td>
<td>Systemic Allergy</td>
<td></td>
<td>Hives, Edema, Abd. Cramping, Bronchospasm, Hypotension</td>
</tr>
</tbody>
</table>
Hypersensitivity: Gell & Coombs Classification

<table>
<thead>
<tr>
<th>Immune reactant</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen</td>
<td>IgE</td>
<td>IgG</td>
<td>IgG</td>
<td>T_{h1} cells</td>
</tr>
<tr>
<td>Effector mechanism</td>
<td>Mast-cell activation</td>
<td>Complement, FcR(^+) cells, phagocytes, NK cells</td>
<td>Complement, Phagocytes</td>
<td>Macrophage activation</td>
</tr>
<tr>
<td>Example of hypersensitivity reaction</td>
<td>Allergic rhinitis, asthma, systemic anaphylaxis</td>
<td>Some drug allergies (e.g., penicillin)</td>
<td>Serum sickness, Arthus reaction</td>
<td>Contact dermatitis, tuberculin reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cytotoxicity</td>
</tr>
</tbody>
</table>

Common to All Types

- Products of the adaptive immune system
 - Require at least one exposure for sensitization to occur
 - Sensitization can be long lived in the absence of re-exposure (>10 years) due to immunologic memory
Type I (Immediate) Hypersensitivity

- **Antigens:**
 - Classically exogenous, as opposed to “self” (autoimmune)
 - Contact via mucous membranes and at low dose appears to favor type I sensitization

- **Reactions:**
 - Occur within seconds-minutes of exposure
 - Severity ranges from irritating to fatal

- **Immune Effect**
 - Initial antigen contact leads to IgE production
 - On re-exposure, antigen-specific IgE initiates the reaction

IgE Production

- Occurs as part of a secondary immune response (generally multiple or persistent exposures)
- Class switch to IgE is directed by IL-4 and IL-13 (Th2 cytokines), and requires T cell help (CD40L)
- The propensity to make an IgE response to environmental antigens varies among individuals
- “Atopic” individuals are those genetically predisposed to form IgE responses. That is, atopy is heritable
Genetics of Atopy

- Complex, multigenic heritability. Candidate genes:
 - Chrom. 11q - β-subunit of the high affinity Fc,RI
 - Chrom. 5q - Cytokine cluster: IL-3, IL-4, IL-5, IL-9, IL-13
 - TIM (T-cell, Ig domain, Mucin domain) - surface protein, variation assoc. with IL-4/IL-13 prod.
 - IL-12 p40 subunit (assoc. with asthma and AD)

- Variation in IgE response to specific allergens is associated with MHC II genetics
 - DRB1*1501 is associated with IgE responses to specific ragweed pollen proteins

Allergy Epidemic

- Type I Hypersensitivity diseases, including asthma and allergic rhinitis, have been increasing in prevalence in the economically “advantaged” parts of the world for 30 years

- The “hygiene hypothesis” attributes increased allergic disease rates to generally decreasing microbial exposure in early life which would normally provide a Th1-promoting effect
 - Neonatal bias: ↓IL-12 (DC) and ↓IFN-γ (T cells)
 - Birth order: ↓allergy rates among 3rd- and 4th-born children
 - Protective effect of day care
 - 1990 - East/West Berlin immediately after the wall fell: East had ↓vaccination rates, ↑prev. childhood infection, but ↓‘ed asthma
 - Hx of measles or HAV infection, or +PPD ↑allergy rates
Allergy Epidemic

• Weighing against the Hygiene Hypothesis:
 - Despite this epidemiologic data, some evidence is hard to reconcile
 - Previous infection with helminths, which generates a strong Th2 response, is also associated with protection against allergy
 - Early life exposure to pathogens is also associated with decreased risk of autoimmune disease (e.g., type I diabetes), a classic Th1-mediated condition
 - Revised hygiene hypothesis - early life exposure to microbial pathogens influences the balance of immune responsive vs. immune modulating influences

Allergy: Sensitization Phase

• Serum IgE produced by plasma cells has a short $T_{1/2}$ (serum $T_{1/2}$ IgG≈30 days; for IgE≈2 days)
• Rapidly taken up by FcεRI on tissue mast cells and circulating basophils
Allergy: Effector Phase

• *Early Phase Response:* within seconds-minutes
 - IgE crosslinking by antigen \(\Rightarrow\) release of preformed mediators
 - histamine \(\Rightarrow\) smooth muscle constriction, mucous secretion, ↑vascular permeability, ↑GI motility, sens. nerve stimulation
Allergy: Effector Phase

Early Phase Response: within seconds-minutes
- IgE crosslinking by antigen → release of preformed mediators
- Histamine → smooth muscle constriction, mucous secretion, ↑vascular permeability, ↑GI motility, sens. nerve stimulation

Allergy: Effector Phase

Late Phase Response: 6-24 hours after exposure
- Mast cell production of newly synthesized mediators
 - Leukotrienes → smooth mm. contraction, vasodil., chemotaxis
 - Cytokines → recruitment of PMN and eosinophils
Mast Cell Degranulation

Pre-exposure to Ag Post-exposure to Ag

FcεRI Signaling

- Structure:
 - Alpha, Beta, Gamma-Gamma
- Alpha - binds IgE monomer
- Beta, Gamma - signal
- ITAM’s
 - Conserved sequences within the receptor tail containing tyrosines
 - ITAM Tyr is phosphorylated on ligand binding
 - Serve as docking sites for downstream activating kinases
Eosinophils

- Innate responder cell in Type I hypersensitivity
 - Production in marrow induced by IL-3, IL-5, GM-CSF
 - Chemotaxis to tissue sites: IL-5, Eotaxin-1, 2, 3
 - "Primed" by IL-5, eotaxins, C5a
 - ↑FcγR and C′ receptor expression
 - induce FcεR expression
 - ↓threshold for degranulation
 - On activation, eosinophils secrete
 - Toxic proteins- major basic protein, eos. cationic protein, eos. derived neurotoxin
 - IL-3, IL-5, GM-CSF, IL-8
 - LT's

Evolutionary Role of Type I Response

- Mast cells line all subepithelial mucosa
 - Rapid recruitment of PMN, eosinophils, monocytes to sites of pathogen entry
 - ↑Lymph flow from peripheral sites to lymph node
 - ↑G.I. motility favors expulsion of G.I. pathogens

- Important role in parasite clearance
 - c-kit−/− mice have no mast cells ↑susceptibility to trichinella, strongyloides
 - Eosinophil depletion (Ab-mediated) severity of schistosomal infection
Evolutionary Role of Type I Response

- STAT6:
 - Mediates IL-4/IL-13 signaling
 - Required for IgE class switch
 - STAT6−/− mice have no IgE

- Wild type or STAT6−/− mice were injected with 500 N. brasiliensis larvae

- Worm counts and fecal egg counts were assessed at 13 days

Type I Sensitivity in Allergy

- Type I Hypersensitivity mediates:
 - Allergic Rhinitis/conjunctivitis (Hayfever)
 - Asthma
 - Food/Medication reactions
 - Contact urticaria
 - Some forms of eczema
 - Anaphylaxis - food, bee sting, drug, exercise-induced
Type I Sensitivity in Allergy

• Documenting allergic sensitivity: skin testing
 - Allergenic extract (airborne, food, venom) is introduced by prick or injection intracutaneously
 - Sensitization is evident within 15-20 minutes as a wheal/flare at the allergen introduction site

Anaphylaxis

• Response to systemic circulation of allergen
 - Triggering of mast cells in peri-vascular tissue
 - Circulating histamine, PG’s/LT’s vascular leak, vasodilatation
 - High-output shock (increased cardiac output, ↓↓BP)
 - Other symptoms: urticaria, flushing, wheeze, laryngeal edema with airway compromise, G.I. cramping, diarrhea
• Rapid progression over seconds-minutes
• Treatment -
 - Early administration epinephrine I.M., followed by antihistamines (H1 and H2 blockade) treat early phase
 - Subsequent administration corticosteroids prevent late phase
Type II Hypersensitivity: Antibody (Ab) Mediated

- Target-specific IgM and IgG mediate damage
- Targets:
 - Self-molecules altered by foreign antigen \(\wedge \) neo-epitope
 - penicillin conjugates to RBC surface proteins \(\wedge \) new penicilloated-protein serves as a target for IgM/IgG \(\wedge \) intravascular hemolysis
 - Self-molecules unaltered = breaking of tolerance
 - Group A Strep pharyngitis yields Ab’s to the Strep M protein \(\wedge \) Ab’s cross react with cardiac muscle and valves \(\wedge \) scarring

Type II Hypersensitivity: Ab Functions

- The mechanisms of type II hypersensitivity are exactly the those of normal Ab function, plus some:

<table>
<thead>
<tr>
<th>Ab Function</th>
<th>Target</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opsonization</td>
<td>Platelet surface proteins</td>
<td>Splenic clearance, thrombocytopenia</td>
</tr>
<tr>
<td>Neutralization</td>
<td>Acetylcholine receptor</td>
<td>Myasthenia Gravis</td>
</tr>
<tr>
<td>ADCC</td>
<td>Glomerular basement membrane proteins</td>
<td>Goodpasteur’s Disease</td>
</tr>
<tr>
<td>C’ Fixation</td>
<td>Penicilloyl-RBC protein conjugates</td>
<td>Hemolytic anemia</td>
</tr>
<tr>
<td>Non-Physiologic</td>
<td>TSH receptor</td>
<td>Grave’s Disease</td>
</tr>
</tbody>
</table>
Type III Hypersensitivity: Immune Complex Mediated

• First Description: Arthus Reaction
 - Rabbit received horse serum containing anti-toxin antibody
 - After several days, antigen (toxin) was injected subcutaneously
 - Classic Arthus reaction occurs within 5-8 hours:
 » Local erythema/tenderness with edema, necrosis, hemorrhage

Arthus Reaction

• Immune Mechanism
 - Antibody-Antigen complexes form within blood vessel walls
 - Complement fixation generates C5a
 » Neutrophil chemoattractant PMN infiltration
 » Anaphylatoxin - local mast cell histamine release tissue edema
 - Neutrophil activation by FcγR's release of cytotoxic enzymes
 - Platelet aggregation by FcγR's small vessel thrombosis, necrosis
 - Local macrophage release of IL-1, TNF-α, and IL-8 - propagation
Type III Hypersensitivity: Immune Complex Mediated

- Serum Sickness: Systemic Arthus-like reaction
 - Rash, fever, lymphadenopathy and arthralgias in recipients of anti-diphtheria antiserum made in horses (hint: 2-3 weeks post-infusion)

- Rabbit Model (Dixon and Lambert, 1960’s):
 - Injection of radiolabeled bovine serum albumin (BSA) day zero
 - Serum BSA and anti-BSA antibody levels were tracked
 - Look for serum immune complexes and proteinuria
Importance of C5a in I.C. Disease

• Mouse Model of Immune Complex Disease:
 - Infuse Anti-ovalbumin Ab via trachea; ovalbumin via I.V.
 - I.C.’s form at respiratory capillaries; examine histology at 4 hours

<table>
<thead>
<tr>
<th></th>
<th>Intratracheal Anti-Ova Ab</th>
<th>I.V. Ova</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>C5aR+/+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>C5aR−/−</td>
</tr>
</tbody>
</table>

Importance of FcγR’s in I.C. Disease

• B/W Mouse - spontaneous accumulation of I.C.’s in the glomerulus
• FcγRI and FcγRIII - contain ITAM’s; activating for phagocytes
• γ-chain knockout (γ−/−): Lacks expression of FcγRI and FcγRIII

Immunology Wars

• Epic Immunologic Battle: 1870-1950
 – “Humoralists” (France): Hypersensitivity is mediated by serum factors
 – vs.
 – “Cellularists” (Germany): Hypersensitivity is mediated by phagocytes

• By 1915, the Humoralists appeared to have won
 – Hay fever, asthma, anaphylaxis
 – Drug-induced hemolysis
 – Arthus reaction, serum sickness

Type IV Hypersensitivity: Tuberculin Reaction

• 1892 - Robert Koch
 – Discoverer of tubercle bacillus
 – Attempted to prevent TB by inoculation with bacillus extract
 – Unfortunately:
 -- No protection for naive individ.
 -- Reactivated disease in exposed
 – But: intradermal injection of bacillus extract in previously exposed individuals resulted in a stereotypic indurated lesion within 48-72 hours
Type IV Hypersensitivity: Delayed Type

• 1942 - Karl Landsteiner and Merrill Chase
 - Demonstrated transfer of tuberculin test sensitivity in guinea pigs
 - Sensitivity is transferred from TB-exposed to unexposed animals with leukocyte transfer, but not with serum transfer
 - Redemption for the Cellularists

Delayed Type Hypersensitivity

• Group of related responses to antigen, all dependent on cell-mediated immunity

• Although prior sensitization is required, reactions occur over 1-3 days following re-exposure

• T cells: necessary and sufficient to elicit the reaction
 - Athymic subjects (animal or human) are not sensitizable
 - T cell depletion (via anti-T cell Ab’s) reverses sensitization
 - Transfer of purified T cells confers sensitization
Varieties of DTH Reactions

<table>
<thead>
<tr>
<th>Type</th>
<th>Reaction Time</th>
<th>Clinical Appearance</th>
<th>Histology</th>
<th>Site/ Antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>48-72 hours</td>
<td>Eczema</td>
<td>T cells followed by macrophages, edema of the epidermis</td>
<td>Epidermal: organic mols., poison ivy, heavy metals</td>
</tr>
<tr>
<td>Tuberculin</td>
<td>48-72 hours</td>
<td>Local Induration</td>
<td>T cells, monocytes, macrophages, basophils, fibrin deposition/edema</td>
<td>Intradermal: PPD, candida, mumps</td>
</tr>
<tr>
<td>Granuloma</td>
<td>21-28 days</td>
<td>Hardened Nodular</td>
<td>Macrophages, epithelioid giant cells, fibrosis</td>
<td>Skin, viscera: persistent Ag (TB, leprosy)</td>
</tr>
</tbody>
</table>

Common to all DTH Reactions

- **Histology of the DTH reaction:**
 - T Cells - CD4 (Th1); some forms CD8
 - Macrophages/monocytes
 - Basophils
 - Fibrin
 - If persistent antigen: multinucleated giant cells; granulomata

- **Cytokines found at the site of a DTH reaction:**
 - IL-2
 - IFN-γ
 - TNF-α
 - Macrophage chemotactic protein (CCL-2)
Contact Sensitivity: Hapten DTH

• Phase One: Initial Exposure - Sensitization
 - Hapten - small organic molecule, frequently lipophilic crossing epidermal barrier by diffusion, associates with cell proteins
 - Chromates (leather tanning), urushiol (poison ivy), nickel
 - Haptenylated proteins are taken up by Langerhans’ cells - peptides bearing hapten are loaded onto MHC I and MHC II
 - LC’s migrate to regional lymph nodes, activate naive T cells

• Phase Two: Re-exposure - Elicitation
 - Hapten-specific memory T cells bearing the cutaneous lymphocyte antigen (CLA-1) continuously migrate between lymphatics and skin
 - Re-encounter with haptenylated protein may occur on:
 - Langerhans’ cell (MHC II) ▶ Th1 cell secretion of IFN-γ, MCP-1 with macrophage recruitment
 - Keratinocyte (MHC I) (lipophilic hapten) ▶ CD8 CTL activation ▶ release of perforins and granzyme ▶ local tissue damage
Hypersensitivity Progression

• Antigen-specific responses may progress from one type of hypersensitivity to another:
 - Latex allergy among healthcare workers
 ‣ Initial reaction is typically a contact sensitivity (type IV reaction)
 ‣ With recurrent latex contact, sensitivity progresses to latex-specific IgE, imparting risk of anaphylaxis
 - p-aminobenzoic acid (PABA), the active ingredient in many sunscreens, can act as a contact sensitizer
 ‣ PABA DTH reactivity is associated with ↑ed risk of immediate type hypersensitivity to local anesthetics (e.g., benzocaine) due to cross-reactivity of the aromatic core

Penicillin Mediates All Types of Hypersensitivity

• Immune-mediated adverse reactions occur at a rate of 1 per 100 administrations

<table>
<thead>
<tr>
<th>Type</th>
<th>Mechanism</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>IgE-mediated</td>
<td>Acute anaphylaxis, urticaria</td>
</tr>
<tr>
<td>II</td>
<td>C’-mediated cytolysis Opsonization</td>
<td>Hemolytic anemia Thrombocytopenia</td>
</tr>
<tr>
<td>III</td>
<td>Immune Complex Damage</td>
<td>Serum sickness Drug fever, Vasculitis</td>
</tr>
<tr>
<td>IV</td>
<td>T Cell mediated</td>
<td>Contact sensitivity</td>
</tr>
</tbody>
</table>