Spondyloarthritis Diseases

- A group of autoimmune diseases that in common appear mediated by activation of autoreactive CD8 T cells

- Physical stress, inflammation and infection with specific microorganisms trigger the immune response

- Primarily affect joints, skin, eyes and mucous membranes

- Autoantibodies such as ANA or RF are absent

Spondylitis Diseases

- Ankylosing spondylitis (ASp)
- Reiter’s syndrome (RS) / reactive arthritis (ReA)
- Psoriatic arthritis (PsA)
- Undifferentiated spondyloarthritis (USpA)
- Enteropathic arthritis (ulcerative colitis, regional enteritis)

Psoriasis
Spondyloarthritis Diseases-features common to all

1. Clinical:- Affect joints, skin, eyes and mucous membranes in varying proportions with characteristic joint involvement: Spondylitis (inflammation of vertebral discs), sacroiliitis (sacroiliac joints) and enthesitis (tendon insertions). All with granulomatous fibrosis and new bone formation

2. Genetic:- Susceptibility to develop disease is associated with inheritance of certain MHC class I alleles, notably HLA-B27

3. Pathogenesis:- Effector/ memory CD8 T cells are activated and clonally expanded while CD4 T cells or B cells are not involved as shown by increased occurrence of these diseases in AIDS

Spondylitis leads to the development of syndesmophytes and ankylosis ASp

T cells invade the junction of annulus fibrosis and vertebral body forming granulation tissue (activated macrophages, T cells and fibroblasts)

Annulus fibers are eroded, then replaced by fibrocartilage that ossifies to form a syndesmophyte. Subperiosteal new bone formation ensues

Progressive cartilaginous and periosteal ossification forms a “bamboo spine”, osteoporosis develops
Sacroiliitis

The subchondral regions of the synarthrotic SI joints are invaded by T cells leading to the formulation of granulation tissue.

The cartilage on the iliac side is eroded first, causing bone plate blurring, joint space “widening” and reactive sclerosis. Ultimately the resultant fibrous ankylosis is replaced by bone, obliterating the SI joint.

Enthesitis (enthesopathy) the central inflammatory unit of spondyloarthritis

Entheses are the specialized fibrocartilagenous region of bone where ligaments, tendons, fascia or joint capsules insert.

Infiltration of entheses by T cells, enthesitis, produces a combination of bone erosions and heterotopic new bone formation. Calcaneal spurs at insertion of plantar fascia and Achilles ligament are classic examples (Lover’s heel).
Inflammatory back pain

Due to the initial inflammation of *enthesitis, spondylitis* or *sacroiliitis*

- Onset before age 40
- Insidious persistent (> 3 mo) dull deep buttock or low back pain
- Poorly localized, does not follow nerve root
- Stiffness/pain upon arising in the morning, or during sleep
- Improvement with exercise

Spondylitis Disorders

Genetic epidemiology

- Strong familial aggregation, identical twin concordance
- HLA-B27 increased, but unevenly, among spondylitis diseases

<table>
<thead>
<tr>
<th>Disorder</th>
<th>HLA-B27 frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankylosing spondylitis</td>
<td>95</td>
</tr>
<tr>
<td>Reiter’s syndrome (reactive arthritis)</td>
<td>70</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>20</td>
</tr>
<tr>
<td>Ethnically matched controls</td>
<td>8</td>
</tr>
</tbody>
</table>

- Other class I alleles may also be involved, especially in PsA
Spondylitis Disorders

CD8 T cell effector mechanisms of tissue injury

• Activated CD8 T cells injure target cell and release cytokines including γ-IFN that reprogram gene expression of nearby cells

• CD8 T cells are CD28-negative, memory / effector cells that receive a “signal 2” from engagement of NK receptors by stress-induced ligands

• The identity of autologous peptides /proteins driving the response is still unknown…aggrecan?

• Macrophages activated by γ-IFN release cytokines (TNF-α)

• Fibroblasts usually have fibrogenic and osteoblastic program activated

Specific Spondyloarthritis Diseases

Ankylosing spondylitis

First disease shown to be related to occurrence of a particular HLA allele

Uniquely high relationship of susceptibility and HLA-B27
Ankylosing spondylitis

- A progressive autoimmune inflammatory disease characterized by widespread spondylitis and sacroiliitis
- Male: female =3-10:1
- Culminates in boney ankylosis of spine
- Onset, age 10-35 with dull pain in lumbar or gluteal regions
- Hip, shoulder knee arthritis in ~30%

Epidemiology: >95% of those affected are positive for HLA-B27
Disease prevalence follows distribution of HLA-B27 alleles, highest in circumpolar regions in Europe and Asia

- Affects 1-3% of HLA-B27 individuals,
- No evidence for triggering by microorganisms

Ankylosing spondylitis - Course

- Begins with sacroiliitis
- Inflammatory back pain and tenderness or pain at central entheses (iliac crests, ischial tuberosities) progresses and ascends over several months to ~10 years, with increasing stiffness and loss of mobility
- Postural changes include loss of lumbar lordosis, buttock atrophy and thoracocervical kyphosis, chest expansion compromised
- Peripheral joints, notably the hips may develop flexion contractures or ankylosis. Compensatory knee flexion
- Peripheral arthritis (~30%) and peripheral enthesopathy (~30%) may dominate the early phase of disease, while bony ankylosis predominates in the latter
Ankylosing spondylitis - systemic involvement

- Acute anterior uveitis may occur at any time (25%). High potential for synchiae and glaucoma
- Apical pulmonary fibrosis often with cavitation, uncommon (<5%)
- Restrictive pulmonary disease due to costovertebral ankylosis, ~10%
- Symptomatic complete heart block due to interventricular septum inflammation and/or aortic insufficiency due to granulomatous aortitis occurring in ~5% of patients. These may appear early, even developing in HLA-B27 individuals without detectable spondylitis

Ankylosing spondylitis- different types of HLA-B27

HLA-B27 alleles differ from one another in polymorphic amino acids, in ethnic distribution and, importantly, whether they determine disease susceptibility

<table>
<thead>
<tr>
<th>Allele</th>
<th>Features</th>
<th>Ank.Spon</th>
</tr>
</thead>
<tbody>
<tr>
<td>B*2701</td>
<td>Rare</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2702</td>
<td>10% of AS in Europe and Middle East</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2703</td>
<td>Rare West African allele</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2704</td>
<td>Major HLA-B27 allele in China and India</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2705</td>
<td>90% of AS, circumpolar Caucasians & Asians</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2706</td>
<td>SE Asia</td>
<td>No</td>
</tr>
<tr>
<td>B*2707</td>
<td>Minor allele in SE Asia, China and India</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2708</td>
<td>Rare, UK and Azores</td>
<td>Yes</td>
</tr>
<tr>
<td>B*2709</td>
<td>Sardinia, Italy</td>
<td>No</td>
</tr>
</tbody>
</table>
A clue to the identity of a driving peptide

HLA-B27 alleles share the same P2 “B” pocket, but differ from one another in the “F” P9 pocket

<table>
<thead>
<tr>
<th>Allele</th>
<th>P9 Pocket</th>
<th>Ank.Spon</th>
</tr>
</thead>
<tbody>
<tr>
<td>B*2701</td>
<td>Tyr</td>
<td>Agn Thr</td>
</tr>
<tr>
<td>B*2702</td>
<td>Tyr</td>
<td>Agn Ile</td>
</tr>
<tr>
<td>B*2703</td>
<td>His</td>
<td>Asp Thr</td>
</tr>
<tr>
<td>B*2704</td>
<td>Tyr</td>
<td>Ser Thr</td>
</tr>
<tr>
<td>B*2705</td>
<td>Tyr</td>
<td>Asp Thr</td>
</tr>
<tr>
<td>B*2706</td>
<td>Tyr</td>
<td>Ser Thr</td>
</tr>
<tr>
<td>B*2707</td>
<td>Tyr</td>
<td>Asp Thr</td>
</tr>
<tr>
<td>B*2708</td>
<td>Tyr</td>
<td>Ser Ile</td>
</tr>
<tr>
<td>B*2709</td>
<td>Tyr</td>
<td>Asp Thr</td>
</tr>
</tbody>
</table>

Current theories of why HLA-B27 predisposes to Ankylosing Spondylitis

Peptide binding properties of HLA-B27

Distinctive chemical state of HLA-B27 molecules

Transgenic rats expressing >100 copies of HLA-B27 develop a disease with some features of ankylosing spondylitis

HLA-B27 may misfold and elicit an altered protein stress response
Specific Spondyloarthritis Diseases

Reiter’s syndrome / Reactive arthritis

Directly triggered by specific pathogenic microorganisms in susceptible persons that carry HLA-B27.

“On August 21, 1916 a lieutenant in the Prussian army developed abdominal pain and diarrhea. This episode lasted 48 hours and was followed by a latent period of 7 days at which time urethritis and conjunctivitis occurred.

“The following day he developed polyarthritis and arthritis of the knees, ankles, elbows, wrists and several interphalangeal joints.

“Within a few days the symptoms remitted and the patient remained well for 3 weeks.

“A relapse followed with a recurrence of urethritis and uveitis”.

H. Reiter (Andre Calin)

Triad of Reiter’s syndrome
Reiter’s syndrome /Reactive arthritis - features

• **Onset** 7-30 days after self limited specific enteric or venereal infection

• **Course**-Initial episode usually regresses completely after weeks to months, but occasionally can return in a series of sometimes increasingly intense recrudescences and become sustained

• **Peripheral arthritis:** acute, highly inflammatory asymmetric arthritis involving knees, ankles, toes, and fingers.
 - All affected joints usually synchronous in abrupt fulminant onset
 - Usually an oligoarthritis with 2-4 joints involved

• **Enthesitis** - notably plantar fascia and Achilles tendon (40%)

• **Dactylitis** (Sausage digit) (40%)

• **Sacroiliitis**, stuttering **spondylitis** with asymmetric involvement of only one or two vertebral units (50%). More extensive vertebral “squaring”

Reiter’s syndrome-Reactive arthritis

Sub periosteal new bone formation a major feature

Infiltration of lymphocytes followed by fluffy reactive new bone formation, similar to process occurring in entheses.

May produce “square” vertebrae and other features of paravertebral ossification

Some similarities to ankylosing spondylitis, but different
Reiter’s syndrome /Reactive arthritis - Clinical features

• **Onychodystrophy** with hyper- and para-keratosis. Often subungual

• **Conjunctivitis** (often first manifestation). Uveitis may appear in recurrent disease

• **Non specific urethritis**

• **Painless circinate balanitis** and mucosal ulcers, prostatitis

• **Heart** - 10% of chronic phase patients develop heart block (1o) from IV septum inflammation and/or aortic valve insufficiency due to granulomatous aortitis at aortic ring

Reiter’s syndrome vs. Reactive arthritis

Reiter’s syndrome - triad of usually explosive arthritis, conjunctivitis and urethritis with keratodermic skin and nail lesions

Reactive arthritis - a somewhat milder and more self-limited post infectious arthritis without evidence of skin or eye involvement or urethritis
Reiter’s syndrome- role of specific infection

Induction by particular pathogens

Develops 7-30 days after enteric infection with certain Gram neg. rods

- *Salmonella typhimurium*, and occasionally *S. paratyphi* or *S. heidelbergii*
- *Shigella flexneri* 2a and 2b, but not after *S. sonnei*
- *Yersinea enterocoliticas*
- *Campylobacter jejuni* or *C. fetus*

These organisms typically invade intestinal and other cells, perhaps resulting in the expression of arthritogenic peptides in class I MHC

Develops 7-30 days after venereal infection with

- *Chlamydia trachomatis* or *C. psittaci*

Epidemiology Reiter’s syndrome /Reactive arthritis

Two situations:

1. In previously healthy individuals, disease increasingly common as proceed North in Europe and Asia with highest prevalence circumpolar

 - HLA-B27 marks the most susceptible individuals; 7% of Northern European Caucasoids, increasing in frequency in Northern peoples; 25-40% of Alaskan Inuit and Northern Asians, e.g. Chuckchis

2. Poorly treated HIV-1 infection, Subsaharan Africa

 - HLA-B27 0% in Zimbabwe, where reactive arthritis is a major health problem in setting of HIV
Reiter’s syndrome / Reactive arthritis

• Penetrance high: > 50% of HLA-B27 individuals develop RS / RA during major epidemics of dysentery by arthritogenic organisms

• HLA-B7 and HLA-B22 are the non HLA B-27 alleles in Northern European Caucasoids most often associated with susceptibility

• The 7-30 day delay in disease development after infection suggests clonal expansion and induction of a memory/effector T cell population

Reiter’s syndrome - Reactive arthritis - Mechanism

Disruption of tolerance of autoreactive CD8 T cells likely occurs through a combination of mechanisms:

• Activation of dendritic cells in initial immune response to infection provides co-stimulatory signals that may disrupt tolerance of other intrinsically self-reactive T cells

• Molecular mimicry - The same T cell clones involved in attack on microorganisms expand and initiate attack on body cells expressing target proteins that contain peptides that mimic the amino acid sequence found in the microorganisms

• Activation of memory / effector T cells - inflammation provides “danger” signals that foster the expression of NK and other innate immune system receptors on CD8 T cells, as well as upregulating expression of ligands for these receptors
HIV and the spondylitis diseases

• Early in the course of the HIV epidemic, a marked increase in instances of very severe Reiter’s syndrome or psoriatic arthritis-psoriasis appeared in North America in patients with frank AIDS. This is still a major problem in Africa and parts of Asia.

• Ankylosing spondylitis not seen with AIDS.

• Sometimes the Reiter’s syndrome was the first evidence of HIV-1 infection and therapy with immunosuppressant drugs accelerated AIDS.

• The paradox of a disease treated with immunosuppression appearing de novo in a profound immune deficiency state was an experiment of nature that eliminated the role of CD4 T cells from the pathogenesis of RS/PsA.

• It suggested that these spondylitis diseases arise from clones of previously expanded memory rather than from naïve CD8 T cells.

(Reumatoid arthritis and SLE are ameliorated in advanced AIDS)

Reiter’s syndrome in the setting of AIDS

• Keratodermia blennorrhagicum- pustular psoriasis-like lesions of palms and soles.

• Psoriasis-like lesions (T cell infiltration, keratinocytes HLA-DR + with delayed differentiation, parakeratosis, sterile microabsesses.
Reiter’s syndrome
Progression to psoriasis pattern of skin disease in AIDS

Possible events in advanced HIV-infection that foster development of Reiter’s syndrome / psoriatic arthritis

• Increased microbial persistence, and difficulty clearing enteric infections, e.g. Salmonella colonization

• Increased cytokines, including IL-15 that enhance expression of NK receptors and ligands

• Increased T cell activation

• Diminished regulatory cell numbers
Specific Spondyloarthritis Diseases

Psoriatic Arthritis

Often triggered by physical stress or injury, and non specific inflammation.

Psoriasis

T cells driven by keratinocyte peptides infiltrate basal layers of skin and retard keratinocyte differentiation resulting in formation of plaque-type lesions of immature keratinocytes.

Psoriatic arthritis: an often clinically distinctive complex of enthesitis and arthritis that occurs in the setting of psoriasis.

It may involve the spine or peripheral joints in a variety of patterns, and is initiated or exacerbated by stress or non specific infection.

Psoriasis / Psoriatic Arthritis

- **Psoriasis**: Onset age 15-30 yrs
- **Prevalence**: ~3%
- **Psoriatic arthritis**: ~15% no prior psoriasis
- **Duration**: 10 years

Psoriatic arthritis

Dactylitis (Sausage digit)
Enthesopathy, fasciitis, tenosynovitis
Spondylitis or sacroiliitis (40%)
Conjunctivitis (20%)
Anterior uveitis (10%)
Systemic features: leukocytosis, fever, night sweats, anemia

Patterns of Peripheral Arthritis (any peripheral joint)

- Symmetric polyarthritis generally similar to rheumatoid arthritis
- Asymmetric oligoarthritis of small and medium-sized joints
- DIP arthritis joints, where it characteristically also involves nails
- Arthritis mutilans

Psoriatic arthritis-patterns

- Symmetric polyarthritis generally similar to rheumatoid arthritis

Affects hands, wrists, ankles, and feet
Generally milder than RA, more stiffness less tenderness

Differentiated from RA by presence of enthesopathy, onychodystrophy, dactylitis, and DIP joint involvement, absence of subcutaneous nodules, or rheumatoid factor (negative RF test)
Psoriatic arthritis-patterns

- **Asymmetric oligoarthritis of small and medium-sized joints**

 Classic type- e.g. two PIP joints in one hand, a MCP joint in the other
 Digits of the hands and feet often affected first, characteristically with dactylitis (sausage digits)

- **DIP arthritis, characteristically seen with nail dystrophy**

 Classic and unique to psoriatic arthritis, but found in only ~5% of patients, primarily males
 Paronychia and swelling of the digital tuft may make appreciation of arthritis difficult; DDx Heberden’s nodes

Psoriatic arthritis-patterns

- **Arthritis mutilans**

 Osteolytic dissolution of joint with redundant overlying skin and telescoping motion of the digit (opera-glass hand)
 Distinctive but uncommon

- **Spondylitis (5%) or sacroiliitis (40%)**

 Isolated or can also occur with other patterns of psoriatic arthritis joint involvement
 Vertebral involvement differs from that of AS: Vertebrae asymmetrically affected with nonmarginal asymmetric syndesmophytes, paravertebral ossification, vertebral fusion with disk calcification, atlantoaxial joint involvement with odontoid erosion and subluxation
Psoriatic Arthritis Genetics

- Concordance rate among monozygotic twins of 35-70%, versus 12-20% for dizygotic twins
- ~40% have strongly positive family histories, most often with first degree relatives affected by psoriasis
- Sex: Men and women are affected equally
- Imprinting: If a parent and child are affected, 85% of time the affected parent will be the father
- Often have psoriasis HLA susceptibility alleles: HLA-Cw*0602, and HLA-B57, HLA-B37, HLA-B13 alleles that are in linkage disequilibrium with HLA-Cw*0602
- Additionally HLA-B27, HLA-B38, HLA-B39

Psoriatic arthritis

- Psoriasis usually precedes or occurs synchronously with arthritis
- Psoriasis varies from obvious skin lesions to subtle involvement (eg, scalp, umbilicus, intergluteal cleft, ear), or only nail manifestations
- In ~15%, arthritis appears before psoriasis - a family history of psoriasis or presence of enthesopathy, spondylitis, and characteristic features, e.g. DIP disease suggests diagnosis
- Onset typically insidious with stiffness predominating, but occasionally may be acute and severe mimicking gout
- Course: usually characterized by flares and remissions
- Controversy over percentage progressing to joint destruction ~10%, ankylosis more common (Hallux rigidus)
Psoriatic Arthritis

Progression of DIP arthritis
Narrowed joint space & condylar erosions
Reactive sub periosteal new bone
Pencil in cup appearance

Psoriatic Arthritis
Nail involvement ~80%
Often seen in digit involved with DIP arthritis

- Onycholysis
- Transverse ridging
- Onychodystrophy
- Pitting
- Acrokeratosis
Hypothetical scheme for stages in the pathogenesis of psoriatic arthritis

Microorganism, inflammation, trauma?

- HLA Genes + Unknown Genes
- Define T cell Repertoire Susceptibility
- Initiates T cell Response
- Tolerance Broken?
- Auto-Antigen Drive Initiated

Triggering of effector / memory response in the Joint

Cytokine Release

Synoviocyte Proliferation Erosions and Fibrosis

Enlarged repertoire of effector, autoreactive T cells in blood & skin