Suggested answers-S1

Q1a. A cytosolic tyrosine kinase expressed exclusively in T cells.

Q1b. Following TCR ligation, the ITAMs of CD3 (particularly the ζ homodimer) become phosphorylated by the tyrosine kinase, Lck (associated with either CD4 or CD8), which recruits ZAP-70 to the phosphorylated ITAMs. ZAP-70 becomes activated and phosphorylates multiple substrates, including additional tyrosine kinases* that phosphorylate and activate phospholipase C- γ (PLC- γ), Ultimately, this leads to secretion of IL-2 and T cell proliferation.

Q1c. PLC- γ hydrolyzes phosphatidylinositol (4,5) bisphosphate (PIP₂) to yield inositol trisphospate (IP₃) and diacylglycerol (DAG). Increases in IP₃ trigger cytosolic calcium, activation of the protein phosphatase calcineurin, and translocation of the transcription factor, NF-AT, to the nucleus. Increases in DAG lead to activation of protein kinase C- θ (PKC- θ) and NF- κ B activation.

Q2. It is not needed for commitment to the CD4 lineage in thymocytes. One potential explanation is that double-positive thymocytes can utilize Syk, a ZAP-70 homolog, to generate TCR-mediated survival signals (Gelfand et al., *J Exp Med* 1821057, 1995). Interestingly, peripheral blood CD4⁺ T-cells cannot signal in these individuals (see Fig. 2), indicating that Syk cannot substitute for ZAP-70 in mediating cytosolic calcium fluxes in peripheral blood lymphocytes.

Q3. This atypical fungus is an obligate intracellular pathogen. Immunity to *Pneumocystic carinii*, like viruses, requires an intact cytotoxic lymphocyte response.

Q4. These bypass early signaling events following TCR/CD3/ZAP-70 engagement/activation. Ionomycin is a calcium ionophore that fluxes calcium (see Fig. 2) and phorbol ester activates PKC. Both circumvent the early signaling defect to activate NF-AT and NF- κ B, respectively, leading to T cell proliferation.

*For those interested, the kinases in question are members of the Tec family. Students are already familiar with one of these, Btk, which is expressed predominantly in B cells. Loss-of-function mutations in the *btk* gene lead to Bruton's agammaglobulinemia, which results from inadequate calcium signaling and decreased survival in B cell progenitors.