

| Ordered<br>During B-C | d Rearı<br>ell Dev | angement of Ig Genes<br>elopment in the Bone Marrow |                     |                                                                                              |  |  |  |  |  |
|-----------------------|--------------------|-----------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
|                       | Stem cell          | Early pro-B cell                                    | Late pro-8 cell     | Large pre-B cell                                                                             |  |  |  |  |  |
|                       |                    |                                                     |                     | Pre-B receptor                                                                               |  |  |  |  |  |
| H-chain<br>genes      | Germine            | D-J<br>rearranging                                  | V-DJ<br>rearranging | VDJ<br>rearranged                                                                            |  |  |  |  |  |
| L-chain<br>genes      | Germine            | Germline                                            | Germline            | Germline                                                                                     |  |  |  |  |  |
| Surface Ig            | Absent             | Absent                                              | Absent              | μ chain transiently<br>at surface as part of<br>pre-B-cell receptor.<br>Mainly intracellular |  |  |  |  |  |
| Fig 7.5 par           | t 1 of 2 © 2001    | Garland Science                                     | ,                   |                                                                                              |  |  |  |  |  |

# Antigen-Independent B-Cell Development Bone Marrow 1. <u>DNA rearrangements</u> establish the primary repertoire, creating *diversity*2. <u>Allelic exclusion</u> ensures that each clone expresses a single antibody on the surface, establishing *specificity*3. <u>Deletion of self-reactive clones</u> establishes tolerance





















# Antigen-Independent B-Cell Development

# **Bone Marrow**

- 1. <u>DNA rearrangements</u> establish the primary repertoire, creating *diversity*
- 2. <u>Allelic exclusion</u> ensures that each clone expresses a single antibody on the surface, establishing *specificity*
- 3. <u>Deletion of self-reactive clones</u> establishes *tolerance*























## SELECTIVE SURVIVAL IN GC

- 1. Selects clones producing high affinity antibody--i.e.affinity maturation
- 2. Eliminates self-reactive clones--peripheral tolerance.

# 1. <u>Memory B cells</u>

Surface Ig, usually IgG High affinity for antigen Long-lived, even in the absence of antigen Respond rapidly to secondary stimulation

# 2. Plasma Cells

Secrete copious amounts of Ig, no surface Ig Non-dividing Some are short-lived, some become long-lived in the bone marrow

# Hyper IgM Syndrome

- 1. Mutations in CD40L
- 2. Mutations in CD40
- 3. Mutations in AID (or repair enzymes downstream of AID)
- 4. One or more other genes defined by human disease!



| Sotypes Have Different Function<br>and Distributions |        |       |      |      |      |      |           |        |  |  |
|------------------------------------------------------|--------|-------|------|------|------|------|-----------|--------|--|--|
| Functional activity                                  | lgM    | lgD   | lgG1 | lgG2 | lgG3 | lgG4 | lgA       | IgE    |  |  |
| Neutralization                                       | +      | -     | ++   | ++   | ++   | ++   | ++        | -      |  |  |
| Opsonization                                         | -      | -     | ***  | •    | ++   | +    | +         | -      |  |  |
| Sensitization for killing<br>by NK cells             | -      | -     | ++   | -    | ++   | -    | -         | -      |  |  |
| Sensitization of<br>mast cells                       | -      | -     | +    | -    | +    | -    | -         | ***    |  |  |
| Activates complement<br>system                       | +++    | -     | ++   | +    | ***  | -    | +         | -      |  |  |
| Distribution                                         | lgM    | lgD   | lgG1 | lgG2 | lgG3 | lgG4 | IgA       | lgE    |  |  |
| Transport across<br>epithelium                       | +      | -     | -    | -    | -    | -    | (dimer)   | -      |  |  |
| Transport across<br>placenta                         | -      | -     | +++  | +    | ++   | +/-  | -         | -      |  |  |
| Diffusion into<br>extravascular sites                | +/-    | -     | +++  | +++  | +++  | +++  | (monomer) | +      |  |  |
| Mean serum level<br>(mg mi <sup>-1</sup> )           | 1.5    | 0.04  | 9    | 3    | 1    | 0.5  | 2.1       | 3x10-5 |  |  |
| Fig 9.19 @ 2001 Gar                                  | and Se | ience |      |      |      |      |           |        |  |  |













### SUMMARY

- Antigen-indpendent B-cell development occurs in the bone marrow: DNA rearrangements create a diverse primary repertoire pBCR and BCR provide developmental checkpoints Self-reactive clones are edited or deleted, providing centraltolerance
- Antigen-dependent B-cell development occurs in the spleen and lymph nodes: TI responses involve repeating epitopes and TLR activation TD responses involve cell-cell contact and soluble mediators
- 3. Peripheral B-cell tolerance occurs by editing, anergy or clonal deletion in the spleen.
- Affinity maturation and CSR occur in germinal center B cells and require T cells, follicular dendritic cells and antigen. Memory cells and plasma cells emerge from the germinal center reaction.
- 5. Immune deficiencies result from gene defects in Btk, CD40, CD40L & AID.