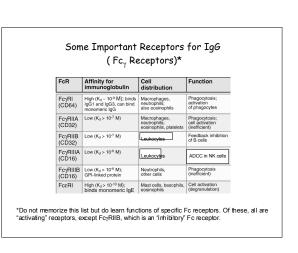
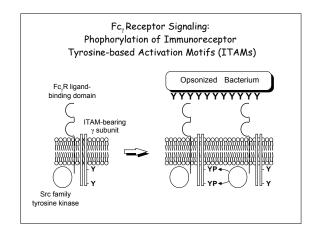
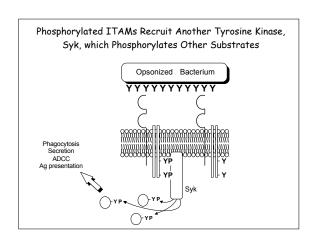
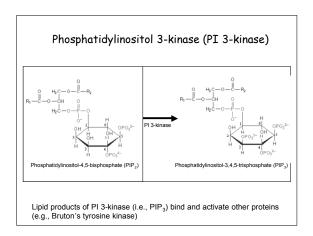

"Discovery consists of seeing what everybody has seen, and thinking what nobody has thought"

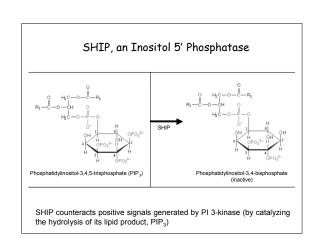

--Albert Szent-György Nobel prize in Physiology or Medicine, 1937

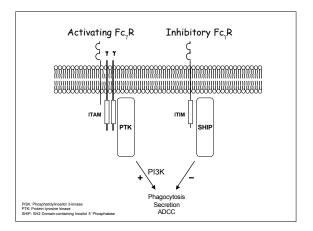
The Biology of Fc_{γ} Receptors and Complement








How do Fc $_{\gamma}$ Receptors Perform Effector Functions?



Two Enzymes Worth Knowing

Fc,RIIB: an Inhibitory Fc, Receptor

Hypothesis: The balance of activating* and inhibitory Fc, receptors determines the outcome of IgG-initiated events in health and disease

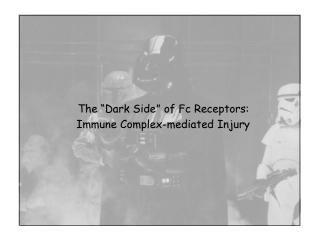
*Activating: Fc_RI, Fc_RIIA, Fc_RIII Inhibitory: Fc, RIIB

Therapeutic Uses of Intravenous Immunoglobulin (IVIg)*

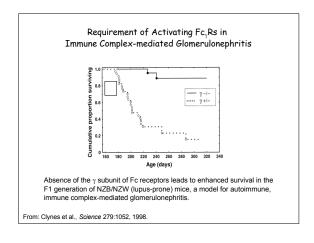
Autoimmune Cytopenias Idiopathic thrombocytopenic purpura (ITP) Acquired immune thrombocytopenias Autoimmune neutropenia Autoimmune hemolytic anemia Autoimmune erythroblastopenia

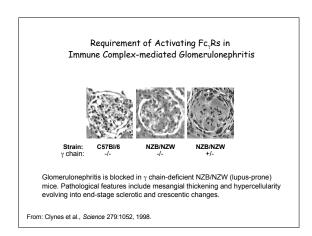
Parvovirus B19-associated red cell aplasia Anti-factor VIII autoimmune disease Acquired von Willebrand's disease

Neurological diseases Guillain-Barré syndrome Chronic inflammatory demyelinating polyneuropathy Myasthenia gravis Multifocal neuropathy


Polymyositis Dermatomyositis

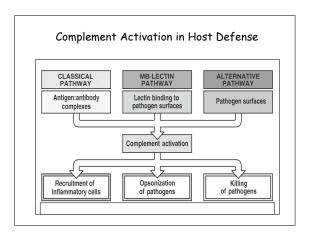
Vasculitis

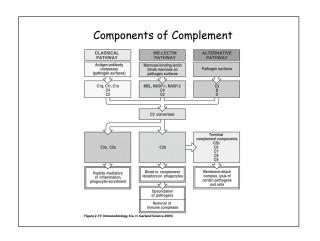

Kawasaki diseas Rawasak disease
ANCA-positive systemic vasculitis
Antiphospholipid syndrome
Recurrent spontaneous abortions
Rheumatoid arthritis and Felty's syndrome Juvenile Rheumatoid Arthritis SLE

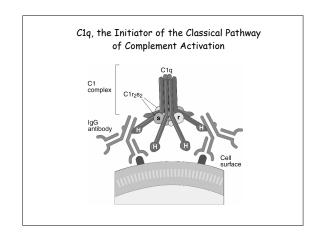

Thyroid ophthalmopathy Birdshot retinochoroidopathy Graft versus host disease Multiple sclerosis Insulin-dependent Diabetes mellitus Steroid-dependent asthma Steroid-dependent atopic dermatitis Crohn's disease

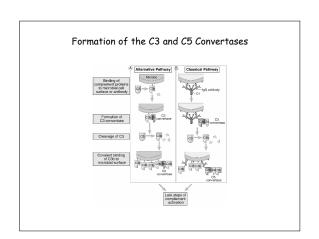
*Other than replacement therapy for hypogammaglobulinemia. Do <u>not</u> memorize this list. Blue denotes diseases in which IVIg plays a major, established therapeutic role

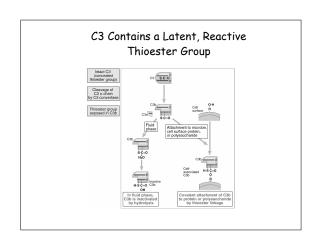
The Arthus Reaction: A Model of Type III Hypersensitivity

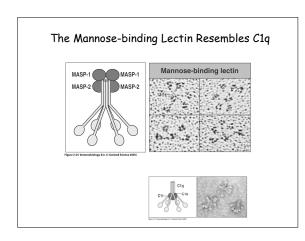

Summary: Fc, receptors

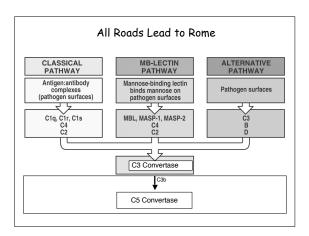

- 1. Ig has multiple isotypes with unique functions
- Receptors for the Fc portion of IgG (Fc_Y receptors) come in two basic types: ITAMcontaining activating receptors that bind PTKs and an ITIM-containing inhibitory
 receptor that antagonizes the Pl 3-kinase pathway. Their relative expression
 determines the outcome of a given ergagement of IgG ligand.
- 4. Unregulated activation of Fcγ receptors can lead to immune complex disease.

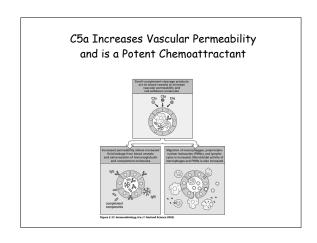

Biology of Complement

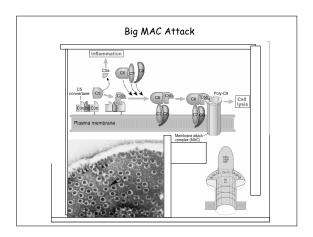

Recognized Functions of Complement

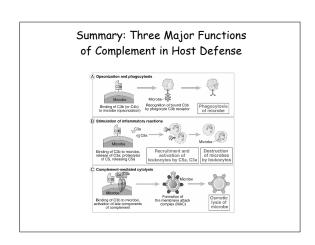

- 1. Host defense
- 2. Clearance of immune complexes
- 3. Disposal of apoptotic debris
- 4. Regulation of the immune response

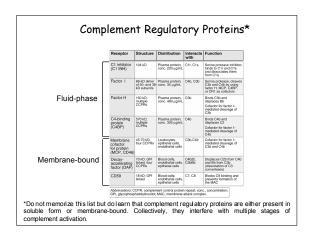


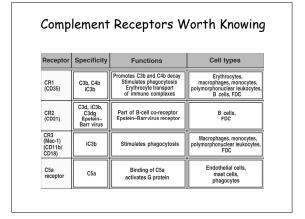







The Lectin Pathway and Other Activators of Complement in the Absence of Antibodies


- A lectin is a molecule that binds to carbohydrate structures
- A collectin (like C1q or Mannose Binding Lectin) is a <u>lectin with collagen</u>-like features
- MBL first binds to mannose on bacterial cell walls. It then binds serine proteases
- MASPs can then activate C4 and C2, thus creating a C3 convertase without involving antibodies
- Deficiency in MBL is associated with increased susceptibility to bacterial infections
- It is simplistic to think of each "pathway" as acting in isolation. Thus, once the classical pathway has produced some C3b, these C3b molecules produce more C3b using the alternative pathway
- C-reactive protein (CRP) An "acute phase" protein produced by the liver, binds to bacterial cell wall lipopolysaccharides. C1q then binds to CRP and thus activates complement without involving antibodies.



β_2 (Leukocyte) Integrins

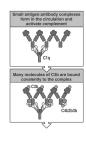
Names	CD	Ligands
LFA -1	CD11a/CD18	ICAMs
CR3 (Mac-1)	CD11b/CD18	iC3b, ICAMs, many others
CR4 (p150, 95)	CD11c/CD18	C3b, iC3b

Leukocyte Adhesion Deficiency (LAD)

Absence of CD18

Decreased to absent surface expression of LFA-1, CR3, CR4

Phagocytosis impaired


Diapedesis impaired

Patients susceptible to bacterial infections

Recognized Functions of Complement

- 1. Host defense
- 2. Clearance of immune complexes
- 3. Disposal of apoptotic debris
- 4. Regulation of the immune response

Clearance of Immune Complexes by Complement Bound to CR1 on Red Blood Cells

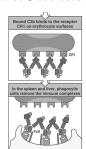


Figure 9-29 Immunobiology, 6/e. |C Garland Science 200

Functions of Complement: Disposal of Apoptotic Debris

C1q helps removal of apoptotic cell debris (antibody not required)

Potential immune consequences of C1q deficiency:

- (1) Increased deposition of debris in kidney
- (2) Possible stimulation of autoantibody production

Disorders of the Complement System

Hereditary Angioneurotic Edema is Due to Deficiency in C1INH*

"Angioneurotic edema can also be acquired in in the course of certain diseases. It is due to a lack of sufficient C1INH, a serine protease inhibitor. C1INH has a dual function: it inhibits activation of the classical pathway of complement activation (via C1q). C1INH also inhibits pathways leading to bradykinin formation, which is why patients with this disease develp edema.

Paroxysmal Nocturnal Hemoglobinuria

- Defect in enzymes that synthesize GPI-linked proteins (such as DAF and CD59)
- Red cells and platelets cannot repair damage caused by unregulated complement
- · Patients suffer hemolysis and thrombosis

Complement Deficiencies

C1q, C1r, C1s, C2, C4 Markedly increased incidence of

autoimmune disease Moderate increased incidence

of pyogenic infections

H, I, C3 Increased incidence of pyogenic

infections. Moderately increased

incidence of autoimmune disease Increased incidence of *Neisseria*

Properdin, Factor D, Increase

C6, C7, C8, C9 infection

CR3, CR4 Increased incidence of pyogenic

infection

C1INH Hereditary angioedema

DAF, CD59 Paroxysmal nocturnal hemoglobinuria

How is Complement Activity Measured?

Method: Incubate antibody-coated erythrocytes with serial dilutions of serum

Results:

 Serum Dilutions:
 1/50
 1/100
 1/150
 1/200

 Hemolysis:
 100%
 100%
 50%
 20%

The more you are able to dilute the serum to obtain a given degree of hemolysis, the more functional complement is present in the serum. In this case, the CH_{50} = 150 (Reciprocal of 1/150).

 CH_{50} tends to fall in some autoimmune diseases due to complement consumption

Summary: Complement

- Complement is an ancient system of host defense that has welldefined functions in host defense: it opsonizes microbes (C3b, C3bi), stimulates inflammation (C3a, C4a, C5a), and mediates lysis of pathogens by the membrane attack complex (C5-9).
- Additional functions of complement include clearance of immune complexes and apoptotic debris. These functions have major implications for the emergence of autoimmunity.
- Among the known inherited complement deficiencies include Leukocyte Adhesion Deficiency (LAD) and complement component deficiencies; these are associated with frequent infections and, in the latter case, autoimmunity.