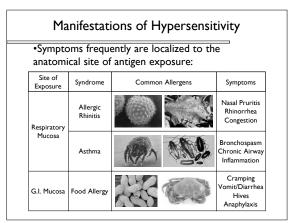

Origins of Hypersensitivity

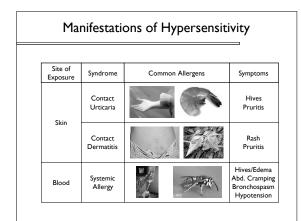
•"Hypersensitivity" first used clinically in 1893:

 During attempts to protect against diphtheria toxin, it was found that an animal would suffer enhanced responses and even death following its second exposure to toxin at a dose too small to injure normal untreated animals

•The term "Allergy" is coined in 1906:

 These hypersensitivity reactions were postulated to be the product of an "allergic" immune response, derived from the Greek allos ergos (altered reactivity)


Definitions


• Hypersensitivity:

- Broadest (Abbas) Disorders caused by immune responses
 - Dysregulated response to foreign antigen
 - Failure of tolerance to self-antigen
- Practical Used clinically to refer to aberrant or excessive immune responses generated against foreign antigens, although the same immune processes apply in many autoimmune diseases

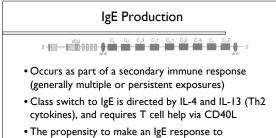
• Allergy:

- Symptoms elicited by encounter with foreign antigen in a previously sensitized individual

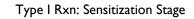
			nsitivity: <u>s Classif</u>		
	Type I	Type II	Type III	Тур	e IV
Common Name	Immediate Hyper- sensitivity	Bystander Reaction	Immune Complex Disease	Delayed-type Hypersensitivity	
Example	Peanut Anaphylaxis	PCN-assoc. Hemolysis	Serum Sickness	Contact Dermatitis (Ni ⁺), PPD	Contact Dermatitis (poison ivy
Mediator	lgE	IgG Monomer	IgG Multimers	CD4 T cell	CD8 T cell
Antigen	Soluble	Cell or Matrix Bound	Soluble	Soluble	Cell- associated
Effector Mechanism	Mast Cell Activation	Complement FcγR ⁺ Cells	Complement PMN, MΦ	Macrophage Activation	Cytotoxicity (perforin/ granzyme)

Common to All Types

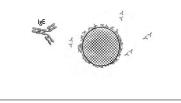
- Products of the adaptive immune system
 - Require at least one exposure for sensitization to occur
 - Sensitization can be long lived in the absence of re-exposure (>10 years) due to immunologic memory
 - Antigen is a protein or is capable of complexing with protein (e.g., nickel ion, penicillin)

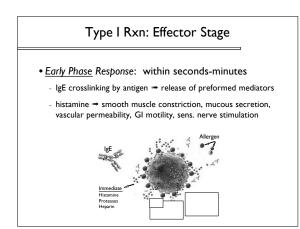

Type I (Immediate) Hypersensitivity

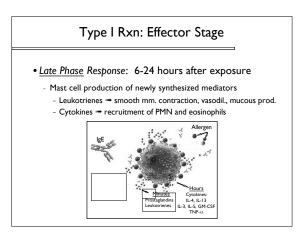
Antigens:

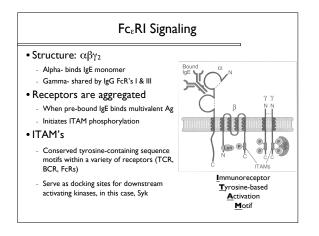

- Exogenous, otherwise innocuous
- Contact typically occurs via mucous membranes (respiratory, GI) and at low dose
- Immune Mechanism
- Antigen contact first leads to IgE production: Sensitization
- On re-exposure, pre-formed antigen-specific IgE triggers mast cell activation resulting in symptoms: hive, wheeze, itch, cramps

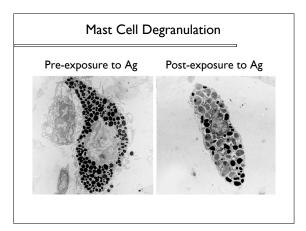
• Reactions:


- Occur within seconds-minutes of exposure
- Severity ranges from irritating to fatal




- The propensity to make an IgE response to environmental antigens varies among individuals
- "Atopic" individuals are those with an inherited predisposition to form IgE responses




- IgE produced by plasma cells has a short circulating half-life (serum $T_{\rm HZ}{\sim}2$ days; comp. to IgG~30 days)
- Rapidly taken up by $\mathsf{Fc}_{\epsilon}\mathsf{RI}$ on tissue mast cells and circulating basophils

Eosinophils

- Innate responder cell in Type I hypersensitivity
- Production: Induced in the bone marrow by:
 - IL-5 Th2 cytokine, drives specifically eosinophil production
 IL-3, GM-CSF drive granulocyte production in general
- Chemotaxis: Homing to tissue sites utilizes: - IL-5, Eotaxins-1, -2, & -3
- "Primed" for activation by IL-5, eotaxins, C3a & C5a - $\Im Fc_7 R \& Fc_a R$ expression; $\Im C'$ receptor expression
 - induce Fc_εR expression
- $\ensuremath{\mathbbmm{U}}$ threshold for degranulation

Eosinophils

Activation:

- Most potent trigger is lg-crosslinking (lgA>lgG>lgE)
- Potentiated by IL-5, GM-CSF, granule proteins (MBP), C3a/C5a
- Results in exocytosis of pre-formed eosinophil toxic proteins

All have pl's >10

Directly toxic to helminths

Also cause tissue damage

Anti-microbial effect:

- major basic protein
- eosinophil cationic protein
- eosinophil-derived neurotoxin
- Mobilize more innate responders
- Secretion of IL-3, IL-5, GM-CSF (more eos), IL-8 (PMN)
- Elaboration of LT-C4, -D4

Evolutionary Role of Type I Response

• Mast cells line all subepithelial mucosa

- Rapid recruitment of PMN, eosinophils,
- monocytes to sites of pathogen entry
- \hat{U} Lymph flow from peripheral sites to lymph node
- $\hat{T}G.I.$ motility \Rightarrow favors expulsion of G.I. pathogens

• Important role in parasite clearance

- c-kit^{-/-} mice have no mast cells[→] ûsusceptibility to *Trichinella*, *Strongyloides*
- Eosinophil depletion (Ab-mediated)⇒ û severity of schistosomal infection

Allergy Epidemic

•Type I Hypersensitivity diseases, including asthma and allergic rhinitis, have been increasing in prevalence in the economically "advantaged" parts of the world for 30 years

- The "hygiene hypothesis" attributes increased allergic disease rates to generally decreasing microbial exposure in early life which would normally provide a Th1-promoting effect
 - Neonatal bias: IL-12 (DC) and $\textcircled{}IFN-\gamma$ (T cells)
 - Birth order: $\mathop{\oplus}$ allergy rates among 3rd- and 4th-born children
 - Protective effect of day care
 - Hx of measles or HAV infection, or +PPD \Rightarrow \oplus allergy rates
- 1990 East/West Berlin immediately after the wall fell: East had
- $\, \vartheta\, \text{vaccination}$ rates, $\, \Omega\, \text{prev.}$ childhood infection, but $\, \vartheta\, \text{'ed}$ asthma

Allergy Epidemic

- Weighing against the Hygiene Hypothesis:
 - Despite this epidemiologic data, some evidence is hard to reconcile
 - Previous infection with helminths, which generates a strong Th2 response, is also associated with protection against allergy
 - Early life exposure to pathogens is also associated with decreased risk of autoimmune disease (e.g., type I diabetes), a classic Th I-mediated condition
- Revised hygiene hypothesis early life exposure to microbial pathogens influences the balance of immune responsive vs. immune modulating influences, not simply Th1-Th2 balance

Type I Hypersensitivity in Allergy

- Manifestations of Type I Hypersensitivity:
- Allergic Rhinitis/conjunctivitis ("Hayfever")
- Asthma prevalence $\, \hat{\mathrm{u}} \, \text{60\%}$ in the past 20 years
- Food/Medication reactions urticaria (hives)
- Contact urticaria
- Some forms of eczema
- Anaphylaxis systemic reaction induced by food, venom, medication, etc.

Demonstrating Type I Hypersensitivity in the Patient

• Documenting allergic sensitivity: skin testing

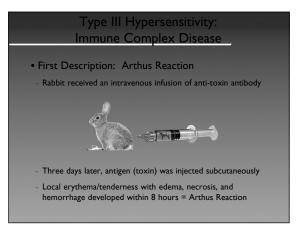
- Allergen (airborne, food, venom, some medications) is introduced by prick or intradermal injection

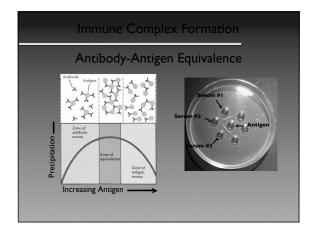
Anaphylaxis

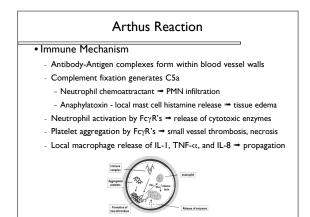
- Response to systemic circulation of allergen
 - Triggering of mast cells in peri-vascular tissue
 - Circulating histamine, PG's/LT's ⇒vasodilatation, vascular leak
- High-output shock: $\operatorname{\mathbb{Q}BP}$ despite $\operatorname{\widehat{}}$ 'ed cardiac output
- Other symptoms: flushing, urticaria, wheeze, laryngeal edema with airway compromise, G.I. cramping, diarrhea
- Rapid progression over seconds to minutes
- Treatment -
 - immediate administration epinephrine I.M., followed by
 - antihistamines (HI and H2 blockade) 🖛 treat early phase
 - subsequent administration corticosteroids >> prevent late phase

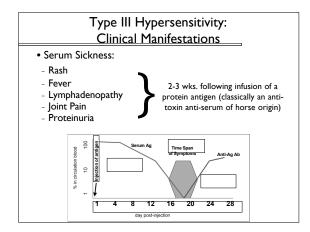
Type II Hypersensitivity

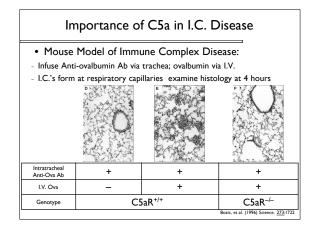
• Antibody-mediated "Bystander Reactions"


- Immune effector is target-specific IgM and IgG
- (Contrast with Type III Rxns in which the Ig is not specific for the tissue being damaged)
- Clinical Manifestations:
 - Classically manifests as a reaction to a foreign substance (most commonly a drug) acting as a hapten
 - The same mechanisms, however, manifest with autoimmunity through the process of molecular mimickry


Type II Hypersensitivity


Drug Reactions


- Hapten a molecule too small to elicit an immune response itself, but capable of covalent conjugation to self proteins, creating a new (non-self) target or epitope
- example: penicillin is metabolized to yield the penicilloyl moiety which binds surface proteins on blood cells and platelets
- _ penicilloyl-proteins represent neoepitopes break tolerance
- Molecular Mimickry
 - Pathogen elicits an appropriate Ab response
 - Ab cross-reacts with self-tissue (very similar epitopes)
 - Group A Strep pharyngitis yields Ab's to the Strep M protein ⇒ Ab's cross react with cardiac muscle and valves ⇒ scarring

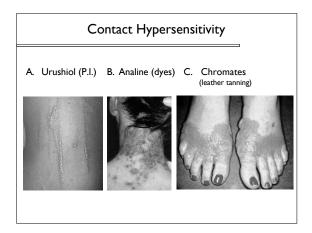

unose or n	ormal Ab functio	on (plus some):
Ab Function	Target	Result	Syndrome
Opsonization	Platelet surface	Splenic	Drug-induced
	proteins	clearance	thrombocytopenia
Neutralization	Acetylcholine	Receptor	Myasthenia
	receptor	blocking	gravis
ADCC	Glomerular basement	Glomerular	Post-Streptococca
	membrane proteins	destruction	renal failure
Complement-	Penicilloyl-RBC	RBC destruction	Drug-induced
mediated lysis	protein conjugates		hemolytic anemia
Non-	TSH receptor	Receptor	Grave's
Physiologic		activation	disease

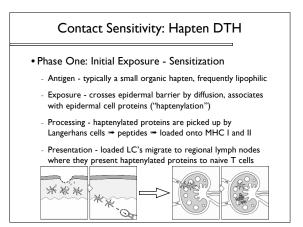
Type IV (Delayed-Type) Hypersensitivity

•Group of related responses to antigen, all dependent on T cell-mediated immunity

•Prior sensitization is required

•Reactions occur over 1-3 days following re-exposure


- •T cells: necessary and sufficient for DTH
- Athymic subjects (animal or human) do not get DTH rxns.
- T cell depletion (via anti-T cell Ab's) reverses sensitization
- Transfer of purified memory T cells confers sensitization


Mani	festatior	ns of DTH R	eactions
Туре	Site	Clinical Appearance	Antigen
Contact	Epidermis	Erythematous Papular Scaling Blistering	Poison ivy, latex, organic mols., metals (Ni ⁺⁺)
Tuberculin	Dermis	Local Induration	Mycobacteria, Candida, Mumps

Common to all DTH Reactions

•Histology of the DTH reaction:

- T Cells CD4 (Th1); some forms CD8
- Macrophages/monocytes
- Basophils
- Tissue edema with fibrin extravasation
- If persistent antigen: multinucleated giant cells; granulomata
- •Cytokines found at the site of a DTH reaction:
 - IL-2
- IFN-γ
- TNF-α
- Macrophage chemotactic protein (CCL-2)

Contact Sensitivity: Hapten DTH

- Phase Two: Re-exposure Elicitation
 - Hapten-specific memory T cells bearing the cutaneous lymphocyte antigen (CLA-1) continuously migrate between lymphatics and skin
 - Re-encounter with haptenylated protein may occur on:
 - Langerhans cell (MHC II) \Rightarrow CD4⁺ T cell activation \Rightarrow secretion of IFN- γ , MCP-1 \Rightarrow macrophage recruitment
 - Keratinocyte (MHC I) (lipophilic hapten) ⇒ CD8⁺ CTL activation
 ⇒ release of performs and granzyme ⇒ local tissue damage

Hypersensitivity: Gell & Coombs Classification

	Type I	Type II	Type III	Тур	e IV
Common Name	Immediate Hyper- sensitivity	Bystander Reaction	Immune Complex Disease	Delaye Hyperse	
Example	Peanut Anaphylaxis	PCN-assoc. Hemolysis	Serum Sickness	Contact Dermatitis (Ni ⁺), PPD	Contact Dermatitis (poison ivy)
Mediator	lgE	IgG Monomer	IgG Multimers	CD4 T cell	CD8 T cell
Antigen	Soluble	Cell or Matrix Bound	Soluble	Soluble	Cell Associated
Effector Mechanism	Mast Cell Activation	Complement FcR ⁺ Cells	Complement PMN, MΦ	Macrophage Activation	Cytotoxicity (perforin/ granzyme)

Hypersensitivity Progression

• Antigen-specific responses may progress from one type of hypersensitivity to another:

- Latex allergy among healthcare workers
 - Initial reaction is typically a contact sensitivity (type IV reaction)
 - With recurrent latex contact, sensitivity progresses to latexspecific IgE, imparting risk of anaphylaxis
- p-aminobenzoic acid (PABA), the active ingredient in many sunscreens, can act as a contact sensitizer
- PABA DTH reactivity is associated with \hat{U} 'ed risk of immediate (type I) hypersensitivity to local anesthetics (e.g., benzocaine) due to cross-reactivity of the aromatic core

Penicillin Mediates All Types

•Immune-mediated adverse reactions occur at a rate of I per 100 administrations (!)

Туре	Mechanism	Example
Ι	IgE-mediated	Acute anaphylaxis, Urticaria
П	C'-mediated cytolysis Opsonization	Hemolytic anemia Thrombocytopenia
Ш	Immune Complex Damage	Serum sickness Drug fever, Vasculitis
IV	T Cell mediated	Contact sensitivity