Hypersensitivity

Stephen Canfield, MD PhD
Assistant Professor
Division of Pulmonary, Allergy
and Critical Care Medicine

Origins of Hypersensitivity

•"Hypersensitivity" first used clinically in 1893:

 During attempts to protect against diphtheria toxin, it was found that an animal would suffer enhanced responses and even death following its second exposure to toxin at a dose too small to injure normal untreated animals

Emil von Behring

- •The term "Allergy" is coined in 1906:
 - These hypersensitivity reactions were postulated to be the product of an "allergic" immune response, derived from the Greek allos ergos (altered reactivity)

Clemens von Pirque

Photos from Silverstein, AM. 1989. A History of Immunology. Academic Press, San Diego

Definitions

- Hypersensitivity:
 - Broadest (Abbas) Disorders caused by immune responses
 - Dysregulated response to foreign antigen
 - Failure of tolerance to self-antigen
 - Practical Used clinically to refer to aberrant or excessive immune responses generated against foreign antigens, although the same immune processes apply in many autoimmune diseases
- Allergy:
 - Symptoms elicited by encounter with foreign antigen in a previously sensitized individual

Manifestations of Hypersensitivity

•Symptoms frequently are localized to the anatomical site of antigen exposure:

Site of Exposure	Syndrome	Common Allergens	Symptoms
Respiratory	Allergic Rhinitis		Nasal Pruritis Rhinorrhea Congestion
Mucosa	Asthma	Who will be	Bronchospasm Chronic Airway Inflammation
G.I. Mucosa	Food Allergy		Cramping Vomit/Diarrhea Hives Anaphylaxis

Manifestations of Hypersensitivity

Site of Exposure	Syndrome	Common Allergens	Symptoms
Claire	Contact Urticaria		Hives Pruritis
Skin	Contact Dermatitis		Rash Pruritis
Blood	Systemic Allergy		Hives/Edema Abd. Cramping Bronchospasm Hypotension

Hypersensitivity: Gell & Coombs Classification

	Type I	Type II	Type III	Тур	e IV
Common Name	Immediate Hyper- sensitivity	Bystander Reaction	Immune Complex Disease	Delaye Hyperse	<i>J</i> 1
Example	Peanut Anaphylaxis	PCN-assoc. Hemolysis	Serum Sickness	Contact Dermatitis (Ni ⁺), PPD	Contact Dermatitis (poison ivy)
Mediator	IgE	IgG Monomer	IgG Multimers	CD4 T cell	CD8 T cell
Antigen	Soluble	Cell or Matrix Bound	Soluble	Soluble	Cell- associated
Effector Mechanism	Mast Cell Activation	Complement FcγR ⁺ Cells	Complement PMN, МФ	Macrophage Activation	Cytotoxicity (perforin/ granzyme)

Common to All Types

- Products of the adaptive immune system
 - Require at least one exposure for sensitization to occur
 - Sensitization can be long lived in the absence of re-exposure (>10 years) due to immunologic memory
 - Antigen is a protein or is capable of complexing with protein (e.g., nickel ion, penicillin)

Type I (Immediate) Hypersensitivity

- Antigens:
 - Exogenous, otherwise innocuous
 - Contact typically occurs via mucous membranes (respiratory, GI) and at low dose
- Immune Mechanism
 - Antigen contact first leads to IgE production: Sensitization
 - On re-exposure, pre-formed antigen-specific IgE triggers mast cell activation resulting in symptoms: hive, wheeze, itch, cramps
- Reactions:
 - Occur within seconds-minutes of exposure
 - Severity ranges from irritating to fatal

IgE Production

- Occurs as part of a secondary immune response (generally multiple or persistent exposures)
- Class switch to IgE is directed by IL-4 and IL-13 (Th2 cytokines), and requires T cell help via CD40L
- The propensity to make an IgE response to environmental antigens varies among individuals
- "Atopic" individuals are those with an inherited predisposition to form IgE responses

Type I Rxn: Sensitization Stage

- IgE produced by plasma cells has a short circulating half-life (serum $T_{1/2}$ ~2 days; comp. to IgG~30 days)
- \bullet Rapidly taken up by $\mathsf{Fc}_\epsilon \mathsf{RI}$ on tissue mast cells and circulating basophils

Type I Rxn: Effector Stage

- Early Phase Response: within seconds-minutes
 - IgE crosslinking by antigen → release of preformed mediators
 - histamine smooth muscle constriction, mucous secretion, vascular permeability, GI motility, sens. nerve stimulation

Type I Rxn: Effector Stage

- Late Phase Response: 6-24 hours after exposure
 - Mast cell production of newly synthesized mediators
 - Leukotrienes → smooth mm. contraction, vasodil., mucous prod.
 - Cytokines → recruitment of PMN and eosinophils

Fc_εRI Signaling

- Structure: $\alpha\beta\gamma_2$
 - Alpha- binds IgE monomer
 - Gamma- shared by IgG FcR's I & III
- Receptors are aggregated
 - When pre-bound IgE binds multivalent Ag
 - Initiates ITAM phosphorylation
- ITAM's
 - Conserved tyrosine-containing sequence motifs within a variety of receptors (TCR, BCR, FcRs)
 - Serve as docking sites for downstream activating kinases, in this case, Syk

Immunoreceptor
Tyrosine-based
Activation
Motif

Eosinophils

- Innate responder cell in Type I hypersensitivity
- Production: Induced in the bone marrow by:
 - IL-5 Th2 cytokine, drives specifically eosinophil production
 - IL-3, GM-CSF drive granulocyte production in general
- Chemotaxis: Homing to tissue sites utilizes:
 - IL-5, Eotaxins-1, -2, & -3
- "Primed" for activation by IL-5, eotaxins, C3a & C5a
 - $\hat{U}Fc_{\gamma}R$ & $Fc_{\alpha}R$ expression; $\hat{U}C'$ receptor expression
 - induce $Fc_{\epsilon}R$ expression
 - Uthreshold for degranulation

Eosinophils

- •Activation:
- Most potent trigger is Ig-crosslinking (IgA>IgG>IgE)
- Potentiated by IL-5, GM-CSF, granule proteins (MBP), C3a/C5a
- Results in exocytosis of pre-formed eosinophil toxic proteins
- Anti-microbial effect:
- major basic protein
- eosinophil cationic protein
- eosinophil-derived neurotoxin

All have pl's >10

Directly toxic to helminths

Also cause tissue damage

- Mobilize more innate responders
- Secretion of IL-3, IL-5, GM-CSF (more eos), IL-8 (PMN)
- Elaboration of LT-C4, -D4

Evolutionary Role of Type I Response

- Mast cells line all subepithelial mucosa
 - Rapid recruitment of PMN, eosinophils, monocytes to sites of pathogen entry
 - 12 Lymph flow from peripheral sites to lymph node
 - ûG.l. motility → favors expulsion of G.l. pathogens
- Important role in parasite clearance
 - c-kit^{-/-} mice have no mast cells → û susceptibility to *Trichinella*, *Strongyloides*
 - Eosinophil depletion (Ab-mediated) → ① severity of schistosomal infection

Allergy Epidemic

- •Type I Hypersensitivity diseases, including asthma and allergic rhinitis, have been increasing in prevalence in the economically "advantaged" parts of the world for 30 years
 - The "hygiene hypothesis" attributes increased allergic disease rates to generally decreasing microbial exposure in early life which would normally provide a Th1-promoting effect
 - Neonatal bias: $\mbox{$\mbox{$\mbox{$$}$IL-12 (DC)$}}$ and $\mbox{$\mbox{$\mbox{$$}$IFN-$$}$}\gamma$ (T cells)
 - Birth order:

 ¬allergy rates among 3rd- and 4th-born children
 - Protective effect of day care
 - Hx of measles or HAV infection, or +PPD → \$\Pi\$ allergy rates
 - 1990 East/West Berlin immediately after the wall fell: East had
 - -
 \$\Psi\$ vaccination rates, \$\hat{\Omega}\$ prev. childhood infection, but \$\Psi\$'ed asthmatically in the second content of the second content of

Allergy Epidemic

- Weighing against the Hygiene Hypothesis:
 - Despite this epidemiologic data, some evidence is hard to reconcile
 - Previous infection with helminths, which generates a strong Th2 response, is also associated with protection against allergy
 - Early life exposure to pathogens is also associated with decreased risk of autoimmune disease (e.g., type I diabetes), a classic Th I -mediated condition
 - Revised hygiene hypothesis early life exposure to microbial pathogens influences the balance of immune responsive vs. immune modulating influences, not simply Th1-Th2 balance

Type I Hypersensitivity in Allergy

- Manifestations of Type I Hypersensitivity:
- Allergic Rhinitis/conjunctivitis ("Hayfever")
- Asthma prevalence û 60% in the past 20 years
- Food/Medication reactions urticaria (hives)
- Contact urticaria
- Some forms of eczema
- Anaphylaxis systemic reaction induced by food, venom, medication, etc.

Demonstrating Type I Hypersensitivity in the Patient

- Documenting allergic sensitivity: skin testing
- Allergen (airborne, food, venom, some medications) is introduced by prick or intradermal injection
- Sensitization is evident within 15-20 minutes as a wheal/flare at the allergen introduction site

Anaphylaxis

- Response to systemic circulation of allergen
 - Triggering of mast cells in peri-vascular tissue

 - High-output shock: ♥BP despite û'ed cardiac output
 - Other symptoms: flushing, urticaria, wheeze, laryngeal edema with airway compromise, G.l. cramping, diarrhea
- Rapid progression over seconds to minutes
- Treatment -
 - immediate administration epinephrine I.M., followed by antihistamines (HI and H2 blockade) → treat early phase
 - subsequent administration corticosteroids → prevent late phase

Type II Hypersensitivity

- Antibody-mediated "Bystander Reactions"
 - Immune effector is target-specific IgM and IgG
 - (Contrast with Type III Rxns in which the Ig is not specific for the tissue being damaged)

Clinical Manifestations:

- Classically manifests as a reaction to a foreign substance (most commonly a drug) acting as a hapten
- The same mechanisms, however, manifest with autoimmunity through the process of molecular mimickry

Type II Hypersensitivity

Drug Reactions

- Hapten a molecule too small to elicit an immune response itself, but capable of covalent conjugation to self proteins, creating a new (non-self) target or epitope
 - _ example: penicillin is metabolized to yield the penicilloyl moiety which binds surface proteins on blood cells and platelets
 - _ penicilloyl-proteins represent neoepitopes → break tolerance

Molecular Mimickry

- Pathogen elicits an appropriate Ab response
- Ab cross-reacts with self-tissue (very similar epitopes)
 - Group A Strep pharyngitis yields Ab's to the Strep M protein
 Ab's cross react with cardiac muscle and valves

•Mechanisms of Type II Hypersensitivity: Exactly those of normal Ab function (plus some):

Ab Function	Target	Result	Syndrome	
Opsonization	Platelet surface proteins	Splenic clearance	Drug-induced thrombocytopenia	
Neutralization	Acetylcholine receptor	Receptor blocking	Myasthenia gravis	
ADCC	Glomerular basement membrane proteins	Glomerular destruction	Post-Streptococcal renal failure	
Complement- mediated lysis	Penicilloyl-RBC protein conjugates	RBC destruction	Drug-induced hemolytic anemia	
Non- Physiologic	TSH receptor	Receptor activation	Grave's disease	

Type III Hypersensitivity: Immune Complex Disease

- First Description: Arthus Reaction
- Rabbit received an intravenous infusion of anti-toxin antibody

- Three days later, antigen (toxin) was injected subcutaneously
- Local erythema/tenderness with edema, necrosis, and hemorrhage developed within 8 hours = Arthus Reaction

Arthus Reaction

- Immune Mechanism
 - Antibody-Antigen complexes form within blood vessel walls
 - Complement fixation generates C5a
 - Neutrophil chemoattractant → PMN infiltration
 - Anaphylatoxin local mast cell histamine release → tissue edema
 - Neutrophil activation by FcγR's → release of cytotoxic enzymes
 - Platelet aggregation by FcγR's → small vessel thrombosis, necrosis
 - Local macrophage release of IL-1, TNF- α , and IL-8 \Longrightarrow propagation

Importance of Fc₇R's in I.C. Disease

- •B/W Mouse spontaneous accumulation of I.C.'s in the glomerulus leads to early death from renal failure
- •FcγRI and FcγRIII contain ITAM's; activating for phagocytes
- •Lack of FcγRI/FcγRIII protects against I.C.-mediated glomerular damage, despite accumulation of IgG/C3b-containing immune complexes

Clynes, et al. (1998) Science. <u>279</u>:1052

Type IV (Delayed-Type) Hypersensitivity

- •Group of related responses to antigen, all dependent on T cell-mediated immunity
- •Prior sensitization is required
- •Reactions occur over I-3 days following re-exposure
- •T cells: necessary and sufficient for DTH
- Athymic subjects (animal or human) do not get DTH rxns.
- T cell depletion (via anti-T cell Ab's) reverses sensitization
- Transfer of purified memory T cells confers sensitization

Manifestations of DTH Reactions

Туре	Site	Clinical Appearance	Antigen
Contact	Epidermis	Erythematous Papular Scaling Blistering	Poison ivy, latex, organic mols., metals (Ni ⁺⁺)
Tuberculin	Dermis	Local Induration	Mycobacteria, Candida, Mumps

Common to all DTH Reactions

- Histology of the DTH reaction:
 - T Cells CD4 (Th1); some forms CD8
 - Macrophages/monocytes
 - Basophils
 - Tissue edema with fibrin extravasation
 - If persistent antigen: multinucleated giant cells; granulomata
- Cytokines found at the site of a DTH reaction:
 - IL-2
 - IFN-γ
 - TNF-o
 - Macrophage chemotactic protein (CCL-2)

Contact Sensitivity: Hapten DTH

- Phase One: Initial Exposure Sensitization
 - Antigen typically a small organic hapten, frequently lipophilic
 - Exposure crosses epidermal barrier by diffusion, associates with epidermal cell proteins ("haptenylation")
 - Processing haptenylated proteins are picked up by
 Langerhans cells → peptides → loaded onto MHC I and II
 - Presentation loaded LC's migrate to regional lymph nodes where they present haptenylated proteins to naive T cells

Contact Sensitivity: Hapten DTH

- Phase Two: Re-exposure Elicitation
 - Hapten-specific memory T cells bearing the cutaneous lymphocyte antigen (CLA-I) continuously migrate between lymphatics and skin
 - Re-encounter with haptenylated protein may occur on:
 - Langerhans cell (MHC II) → CD4⁺ T cell activation → secretion of IFN-γ, MCP-1 → macrophage recruitment
 - Keratinocyte (MHC I) (lipophilic hapten) → CD8+ CTL activation release of perforins and granzyme → local tissue damage

Hypersensitivity: Gell & Coombs Classification

	Type I	Type II	Type III	Тур	e IV
Common Name	Immediate Hyper- sensitivity	Bystander Reaction	Immune Complex Disease	Delaye Hyperse	
Example	Peanut Anaphylaxis	PCN-assoc. Hemolysis	Serum Sickness	Contact Dermatitis (Ni ⁺), PPD	Contact Dermatitis (poison ivy)
Mediator	IgE	IgG Monomer	IgG Multimers	CD4 T cell	CD8 T cell
Antigen	Soluble	Cell or Matrix Bound	Soluble	Soluble	Cell Associated
Effector Mechanism	Mast Cell Activation	Complement FcR ⁺ Cells	Complement PMN, МФ	Macrophage Activation	Cytotoxicity (perforin/ granzyme)

Hypersensitivity Progression

- Antigen-specific responses may progress from one type of hypersensitivity to another:
 - Latex allergy among healthcare workers
 - Initial reaction is typically a contact sensitivity (type IV reaction)
 - With recurrent latex contact, sensitivity progresses to latexspecific IgE, imparting risk of anaphylaxis
 - p-aminobenzoic acid (PABA), the active ingredient in many sunscreens, can act as a contact sensitizer
 - PABA DTH reactivity is associated with û'ed risk of immediate (type I) hypersensitivity to local anesthetics (e.g., benzocaine) due to cross-reactivity of the aromatic core

Penicillin Mediates All Types

•Immune-mediated adverse reactions occur at a rate of I per 100 administrations (!)

Type	Mechanism	Example
ı	IgE-mediated	Acute anaphylaxis, Urticaria
II	C'-mediated cytolysis Opsonization	Hemolytic anemia Thrombocytopenia
III	Immune Complex Damage	Serum sickness Drug fever, Vasculitis
IV	T Cell mediated	Contact sensitivity