Transplantation Immunology

Mitchell S. Cairo, MD

Professor of Pediatrics, Medicine and Pathology
Chief, Division, Pediatric Hematology &
Blood & Marrow Transplantation
Children's Hospital New York Presbyterian
Tel – 212-305-8316
Fax – 212-305-8428
E-mail – mc1310@columbia.edu

Objectives

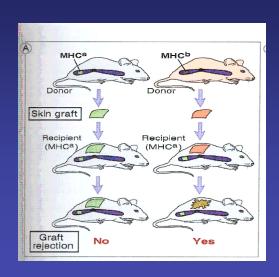
- Understand the immunological mechanisms responsible for first and second set allograft skin rejection
- Conceptualize direct and indirect alloantigen recognition
- Learn the definition and mechanism(s)
 associated with the mixed lymphocyte reaction
 (MLR)

Objectives

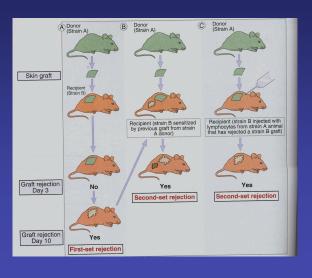
- Distinguish and compare the pathological mechanisms and description of hyperacute, acute and chronic solid organ vs. bone marrow allograft rejection
- Begin to understand the mechanisms of central and peripheral immunological tolerance
- Appreciate the general & specific indication for bone marrow transplantation and essential components for development of graft vs. host disease (GVHD)

Types of Grafts

- Autologous (self)
 - e.g., BM, peripheral blood stem cells, skin, bone
- Syngeneic (identical twin)
- Allogeneic (another human except identical twin)
- Xenogeneic (one species to another)

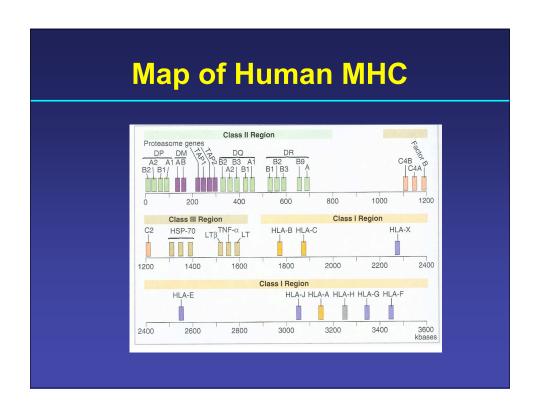

Rejection

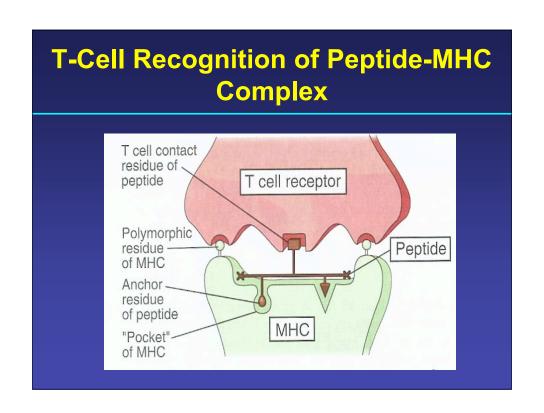
- First Set Rejection
 - Skin graft in mice 7-10 days
- · Second Set Rejection
 - Skin graft in mice in 2-3 days

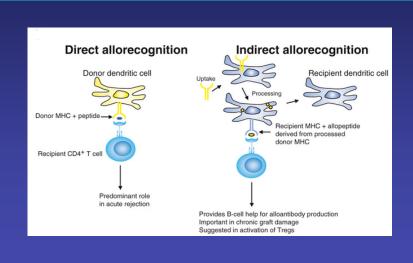

Mechanisms

- Foreign alloantigen recognition
- Memory lymphocytes (adaptive immunity)
- · Can be adoptively transferred

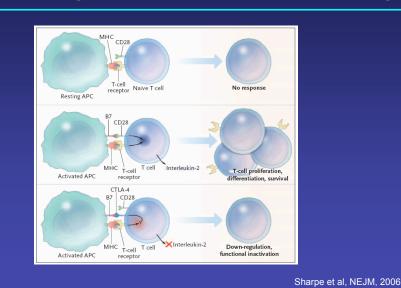
MHC Restricted Allograft Rejection

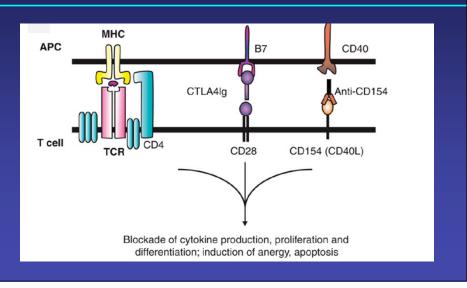



First & Second Allograft Rejection


AlloAntigen Recognition

- Major Histocompatibility Complex (MHC)
 - Class I HLA A, B, C bind to TCR on CD8 T-Cell
 - Class II DR, DP, DQ bind to TCR on CD4 T-Cell
 - Most polymorphic genes in human genome
 - Co-dominantly expressed
- Direct presentation (Donor APC)
 - Unprocessed allogeneic MHC
- Indirect presentation (Host APC)
 - Processed peptide of allogeneic MHC

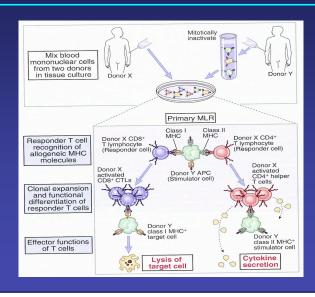



Direct and Indirect AlloAntigen Recognition

Regulation of T-cell Activation and Tolerance by B7- CD28/CTLA-4 Pathway

Antigen Recognition & Immunological Synapse

Mixed Lymphocyte Reaction (MLR)


• Definition & Mechanism

- In vitro test of T-cell regulation of allogeneic MHC
- Stimulators (donor-irradiated monnuclear cells)
- Responders (recipient mononuclear cells)
- Measure proliferative response of responders (tritiated thymidine incorporation)

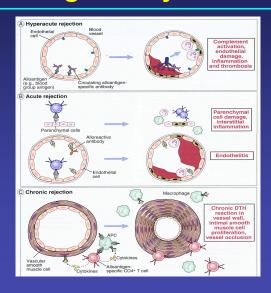
Requirements

- Can be adoptively transferred
- · Require co-stimulation
- Require MHC
- Require Class I differences for CD8 T-cell response
- Require Class II differences for CD4 T-cell response

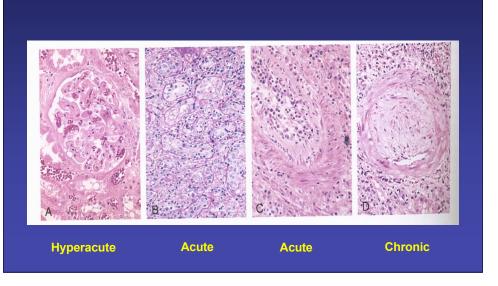
Mixed Lymphocyte Reaction (MLR)

Pathological Mechanism of Rejection

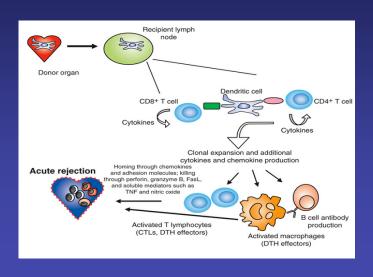
Solid Organ


- Hyperacute
 - Minutes to hours
 - Preexisting antibodies (IgG)
 - Intravascular thrombosis
 - Hx of blood transfusion, transplantation or multiple pregnancies
- Acute Rejection
 - Few days to weeks
 - CD4 + CD8 T-Cells
 - Humoral antibody response
 - Parenchymal damage & Inflammation
- Chronic Rejection
 - Chronic fibrosis
 - Accelerated arteriosclerosis
 - 6 months to yrs
 - CD4, CD8, (Th2)
 - Macrophages

Bone Marrow/PBSC


Not Applicable

- Primary Graft Failure
 - 10 30 Days
 - Host NK Cells
 - Lysis of donor stem cells
- Secondary Graft Failure
 - 30 days 6 months
 - Autologous T-Cells CD4 + CD8
 - Lysis of donor stem cells


Immune Mechanisms of Solid Organ Allograft Rejection

Hyperacute, Acute, Chronic Kidney Allograft Rejection

Mechanisms of Acute Allograft Rejection

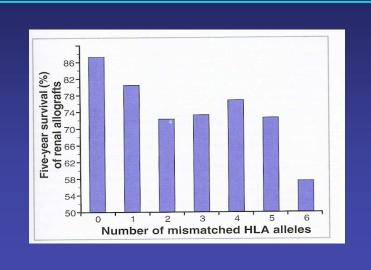
Prevention & Treatment of Allograft Rejection

- ABO Compatible
 - (Prevent hyperacute rejection in solid organs) (Prevent transfusion reaction in BM/PBSC)
- · MHC allele closely matched
- · Calcineurin inhibitors
 - Cyclosporine binds to Cyclophillin
 - Tacrolimus (FK506) binds to FK Binding Proteins (FKBP)
 - Calcineurin activates Nuclear Factor of Activated T-Cells (NFAT)
 - NFAT promotes expression of IL-2
- IMPDH Inhibitors (Inosine Monophosphate Dehydrogenase)
 - Mycophenolate Mofetil (MMF)
 - Inhibits guanine nucleotide synthesis
 - Active metabolite is Mycophenolic acid (MPA)

Prevention & Treatment of Allograft Rejection

- Inhibition of mTOR
 - Rapamycin binds to FKBPInhibits mTOR

 - · Inhibits IL-2 signaling
- Antibodies to T-Cells

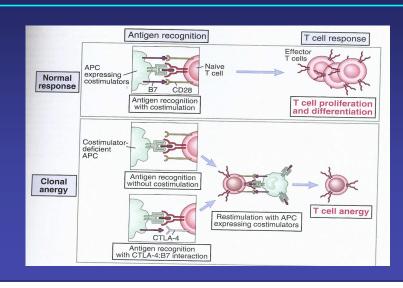

 - OKT3Daclizumab
- (Anti-CD3) (Anti-CD25)
- Corticosteroids

 - Prednisone/SolumedrolInhibits Macrophage Cytokine Secretion
- Anti-inflammatory
 Infliximab (Anti-TNF-α Antibody)
- Blocks B7 Co-Stimulation

 - CTLA-4-Ig
 Inhibits T-cell Activation
 Induces Tolerance
- Block CD40 Ligand Binding

 - Anti CD40 Ligand
 Inhibits Macrophage & Endothelial Activation

Incidence of Renal Allograft Survival in Influenced by HLA Matching


Mechanism of T-Cell Activation vs Tolerance

Immunological Tolerance

- Immunological specific recognition of self antigen by specific lymphoytes
- Central tolerance (Thymus-dervived)
 - · Negative selection of autoreactive T-Cells
 - · Regulation of T-Cell development
- Peripheral Tolerance
 - Clonal anergy (Inadequate co-stimulation)
 - Deletion (Activation-induced cell death)
 - Regulatory / Suppressor Cells (Inhibit T-Cell activation / proliferation)

Mechanism of T-Cell Inactivation (CTLA-4/B7 Interaction)

Mechanism of T-Cell Inhibition (Regulatory T-Cells)

General Indications of Blood and Marrow Transplantation

- Dose intensity for malignant tumor (DI)
- Graft vsTumor (GVT)
- · Gene replacement
- Graft vs Autoimmune (GVHI)
- Gene therapy
- Marrow failure

Specific Indications (Pediatric)

Malignant

- Leukemia
- Solid Tumors
- Lymphomas

Conditioning Therapy

Myeloablative - TBI Based

Myeloablative - Non TBI Based

Non-Myeloablative

Engraftment

• Myeloid Absolute neutophil count ≥ 500/mm³ x 2 days after nadir

 Platelet Platelets ≥ 20 k/mm³ x 7 days untransfused after nadir

Chimerism (Allogeneic)

- Fluorescence in situ Hybridization (FISH) (Sex mismatch)
- VNTR (Molecular)

Complications (Acute)

- Graft failure (GF)
- Graft vs Host Disease (GVHD)
- Mucositis
- Veno-occlusive disease (VOD)

- Hemorrhagic cystitis
- Infections
- Persistent and/or recurrent disease

Essential Components Required for GVHD

- Immuno-incompetent host
- Infusion of competent donor T-cells
- · HLA disparity between host and donor

Graft vs Host Disease

• Hyperacute Day 0 – 7

• Acute Day 7 – 100

• Chronic Day 100 ≥

Acute Graft vs Host Disease

• Dermal (Skin): Maculopapular

Palms / Soles

Pruritic ±

Cheeks/ Ears/ Neck / Trunk

Necrosis / Bullae

• Hepatic: Hyperbilirubinemia

Transaminemia

• Gastrointestinal: Diarrhea

Abdominal pain

Vomiting Nausea

Risk Factors of GVHD

HLA disparity

6/6 > 5/6 > 4/6

Allo stem cell source

MRD > UCB > UBM

- Donor Age
- Sex incompatibility
- CMV incompatibility
- Immune suppression

Common Prophylactic Immune Suppressants

Methotrexate

(MTX)

Cyclosporine

(CSP)

Prednisone

(PDN)

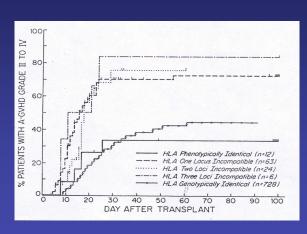
Tarcrolimus

(FK506)

Mycophenolate Mofitel

(MMF)

Anti Thymocyte Globulin


(ATG)

Alemtuzamab

(Campath)

• T-Cell Depletion

Risk of Acute GVHD and HLA Disparity

Beatty et al *NEJM*: 313; 765, 1985

Chronic GVHD

Skin: Rash (lichenoid, sclerodermatous, hyper/hypo pigmented, flaky),

Alopecia

Joints: Arthralgia, arthritis, contractures

Oral/Ocular : Sjogren's Syndrome

Hepatic: Transaminemia, hyperbilirubinemia, cirrhosis

• GI: Dysphagia, pain, vomiting, diarrhea, abdominal pain

• Pulmonary: Bronchiolitis obliterans (BO), Bronchiolitis obliterans Organizing

Pneumonia (BOOP)

• Hematologic/Immune: Cytopenias, dysfunction

Serositis: Pericardial, pleural

Summary

- First set donor tissue rejection from a nonidentical MHC recipient is a primary adaptive immune response
- Second set donor tissue rejection for a nonidentical MHC recipient involves memory antigen host T & B cells
- Alloantigen antigen direct and indirect presentation involves donor and host APC, respectively

Summary

- T-cell activation & proliferation requires immunological synapse with TCR/MHC and co-simulating ligands & receptors
- Tissue rejection maybe hyperacute (preexsisting Ab) acute (days to weeks) and/or chronic (months to years)
- Allogenic stem cell transplantation may result in hyperacute (1-7d), acute (7-10d) and/or chronic (100d – 5yr) GVHD.