

Antigen-Independent B-Cell Development Bone Marrow 1. <u>DNA rearrangements</u> establish the primary repertoire, creating *diversity*2. <u>Allelic exclusion</u> ensures that each clone expresses a single antibody on the surface, establishing *specificity*3. <u>Deletion of self-reactive clones</u> establishes tolerance

Antigen-Independent B-Cell Development

Bone Marrow

- 1. <u>DNA rearrangements</u> establish the primary repertoire, creating *diversity*
- 2. <u>Allelic exclusion</u> ensures that each clone expresses a single antibody on the surface, establishing *specificity*
- 3. <u>Deletion and editing of self-reactive clones</u> establishes *tolerance*

Antigen-Dependent B Cell Maturation In Periphery (spleen and LN)
Antigen and T_H cells give B cells two signals:

proliferate
differentiate

T-cell dependent responses are refined two ways:

higher affinity antibodies
IgG/A/E ("switched") isotypes

Two products of B cell development:

plasma cells secrete Ig (final effector)
memory cells respond to II° antigen

T Cell Help Is Required for GC Reactions

(B cells signal T cells by presenting Ag in association with MHC II) $\ensuremath{\mathsf{TI}}$

- T cells provide 2 kinds of help to B cells:
 - 1. Cell-cell signals from CD40L/CD40 and other surface molecules.
 - 2. Secreted cytokines

4. Final maturation to memory or plasma cell.

Cytokines	Role of cytokines in regulating Ig isotype expression						
	IgM	lgG3	lgG1	lgG2b	lgG2a	IgE	IgA
IL-4	Inhibits	Inhibits	Induces		Inhibits	Induces	
IL-5							Augments
IFN-γ	Inhibits	Induces	Inhibits		Induces	Inhibits	
TGF-β	Inhibits	Inhibits		Induces			Induces

1. Memory B cells

Surface Ig, usually IgG High affinity for antigen Long-lived, even in the absence of antigen Respond rapidly to secondary stimulation

2. Plasma Cells-final B cell effectors

Secrete copious amounts of Ig, no surface Ig Non-dividing Some are short-lived, some become

long-lived in the bone marrow

ANTIGEN-DEPENDENT B CELL MATURATION

- 1. 2.
- Occurs in periphery (spleen, lymph nodes) Antigen selects specific clones for proliferation and maturation. Bacterial polysaccharides are T-cell independent activators of B cells. Protein antigens require T cells to help B cells mature. T cells and B cells communicate 3. 4. 5.
 - -B cells process antigen and present peptide-MHC to T cells, which stimulates the T cells. -T cells provide cell-cell signals via CD40L/CD40
 - -T cells provide soluble cyotkine signals
- T-cell dependent B cell maturation occurs in Germinal Centers
 Affinity maturation in GCs results from somatic hypermutation + selection for high antigen-binding affinity
 Class switch recombination occurs in GCs

- Deletion of self-reactive clones provides peripheral tolerance.
 Memory B cells and plasma cells emerge from the GC reaction.

