Introduction to the Immune System

Stephen Canfield, MD, PhD
Division of Pulmonary, Allergy, and Critical Care Medicine

The Immune System in Health

- Defense against invading organisms
- Surveillance against malignancy
- Orchestration of tissue repair
- Patrol against senescence
- Interface with metabolic processes
 - Body temperature
 - Fe^{3+} balance
 - Body mass

The Immune System in Disease

- Too little - immune deficiency
- Too much - attack on self
- Too long - tissue remodeling
- Too “anxious” - hypersensitivity
- Too effective - graft rejection

Tips on Challenges You Will Face

- Vast new vocabulary
- "Rules" are built on experimental observation
 - Every rule has an exception
- The "system" is a network of many players
 - Zoom in to study a player, but remember...
 - Zoom back out to see how it fits in big picture
 - The elegance is in the orchestra, not one player
- Understanding is evolving
 - New concepts and new players added every year

Layers of Defense

- Innate Immune System
 - Array of sensors for "danger"
 - Recognize pathogen-associated molecular patterns (PAMP's) - shared by many pathogens
 - Rapid activation - no prior contact needed

- Adaptive Immune System
 - Uses recent data to build the perfect responder
 - Remembers the invader for future rapid response

Innate Immune System

- Soluble Complement Cascade
- Cellular Phagocytes
- Natural Killers

- LPS
- Cpg DNA
- Flagellin
- dsRNA
- Manose
The Complement System

• The pre-existing hostile milieu
• Set of 25 highly abundant serum proteins
• Forms a proteolytic cascade at the cell surface
 - Generation of cell-bound fragments
 - Lysis of pathogen cell
 - Tagging of pathogen for phagocytosis: opsonization
• Release of soluble fragments

Generation of cell-bound fragments
Release of soluble fragments
Lysis of pathogen cell
Tagging of pathogen for phagocytosis: opsonization

Macrophages

Tissue-resident sentinels
Arrayed with “sensors”:
- PAMP receptors
- Complement R’s
- Antibody R’s
Reorganize cytoskeleton in response to these inputs:
Seek & Engulf

Cells of the Innate System

• Phagocytes
• Macrophages
• Neutrophils (aka: polymorphonuclear leukocytes)
• Dendritic Cells
• Natural Killers (NK) Cells

Neutrophils

• Most abundant blood leukocyte
• 3 million/day exit bone marrow
• Production ↑↑ with infection
• Exit blood → tissue when called
• Chemotax along gradients:
 - Pathogen components
 - Complement fragments
 - Macrophage signals
• Engulf and kill
• Survive hours to days - major component of pus

Mφ as Refuse Manager

Quicktime™ and a
Animation decompressor
are needed to see this picture.

Used with permission. ©Cells Alive.com

Sompayrac: How the Immune System Works, 3rd Ed. Copyright © 2008 by Blackwell Publishing Ltd.
Neutrophil Chemotaxis

- Phagocyte with a dual career - reconnaissance specialist
- Starts out a tissue-resident sentinel
- Constant pinocytosis - "small bites" sampling surroundings
- Pathogen contact → career change
- Picks up stakes - migrates from tissue to local lymph node
- Literally "presents" pathogen fragments to cells of the adaptive system
- Bridge between the innate and adaptive

Soluble Intercellular Signals

- **Cytokines** - secretory proteins that mediate immune & inflammatory reactions
 - bind to specific receptors on signal-receiving cells
 - Influence the state of activation, or effector functions of the recipient cell
- **Interleukins** - cytokines that generally function to communicate between leukocytes
- **Chemokines** - small cytokines that function in leukocyte chemotaxis: hence "chemo-" + "-kine"

Macrophage/Neutrophil Killing

- Phago-lysosome contents
 - Phagocyte Oxidase → oxygen radicals
 - Inducible NO Synthase → nitric oxide
 - Acid pH
 - Proteases

Innate Call for Help

- PAMP recognition → Mφ activation → ALARM
 - Secrete interleukin-1 (IL-1)
 - Secrete tumor necrosis factor (TNF-α)
- Two critical "innate" immune system cytokines: Activate nearby neutrophils
 - Alter local vascular endothelium to recruit more neutrophils
- Signal DC’s to “mature” - initiate migration
- Signal hypothalamus to ↑ body temperature

Dendritic Cells

- Phagocyte with a dual career - reconnaissance specialist
- Starts out a tissue-resident sentinel
- Constant pinocytosis - "small bites" sampling surroundings
- Pathogen contact → career change
- Picks up stakes - migrates from tissue to local lymph node
- Literally "presents" pathogen fragments to cells of the adaptive system
- Bridge between the innate and adaptive

Is that all there is?

- Yes, for 99% of the animal kingdom
- But if you’re a jawed vertebrate... there’s more!
- **Adaptive Immune System: B & T Lymphocytes**
 - Learn from pathogen contact: ↑ effectiveness
 - Discern fine molecular differences:
 - Single amino acid substitution in a peptide chain
 - Even addition of a phosphate group to an amino acid side chain
How the Immune System Learns

- Each cell is generated with a unique Ag receptor
- Generated randomly
- Gen. by genomic DNA rearrangement
- Extremely diverse: ~100 billion possible R’s
- Naive lymphocytes patrol 2° lymphoid organs
- Most never find Ag → survive ~3 weeks
- Lucky few: Ag encounter → activation and proliferation → clonal expansion

B Lymphocytes

- Develop in the bone marrow
- Each new B cell makes a unique antigen receptor (BCR)
- This BCR is an immunoglobulin (Ig), aka, antibody
- Ag binding by BCR → clonal expansion
 - Some daughter cells become plasma cells: immunoglobulin secreting factories
 - Others become memory B cells: long-lived, capable of rapid response on re-encounter of antigen

Immunoglobulin-Antigen Binding

- Tetramer
 - 2 H chains + 2 L chains
 - Interchain disulfides
 - Variable End - CDR’s
 - Huge diversity
 - Constant End
 - Determines Ig Class:
 - IgM, IgD, IgG, IgA, IgE
 - and effector functions

T Lymphocytes

- Hematopoietic origin (marrow) but most of their development occurs in the thymus
- Like B cells, T cells:
 - Utilize a surface Ag receptor (TCR)
 - Extreme diversity of Ag binding
 - Ag receptor triggering is required to initiate clonal expansion
 - Ag “experienced” cells produce a long-lived memory population

Immunoglobulins

T Lymphocytes

- Unlike B cells, T cells:
 - Never secrete their Ag receptor
 - Cannot bind free antigen molecules - only peptides of 8-25 amino acids
 - Require that Ag be presented to them on a special “billboard”:
 - Major Histocompatibility Molecule
Major Histocompatibility Molecules

- Two Classes: I and II
- Highly polymorphic
 - Vary greatly from one individual to the next
 - Identified as the basis for organ rejection between genetically non-identical individuals
- Also termed “Human Leukocyte Antigens” (HLA)

MHC Class I

- Expression:
 - All nucleated cells
- Structure:
 - α-chain + β2 microglobulin
- Antigenic peptides:
 - Derived from cell’s cytoplasm (generally from proteins made within the cell)

MHC Class II

- Expression:
 - Antigen presenting cells (APC’s)
 - Examples - macrophages, dendritic cells, B cells
- Structure
 - α and β chains
- Antigenic peptides
 - Derived from the cell’s endocytic compartment (generally from proteins external to the cell)

T Cell Career Paths

- CD4+ T cells
 - Most commonly termed “helper T cells” (Th’s)
 - Recognize Ag peptide presented by MHC Class II
 - Provide essential activation signals to B Cells, CD8+ T cells, and phagocytes
 - soluble - cytokines
 - surface molecules - CD40L

- CD8+ T cells
 - Most commonly termed “cytotoxic T cells” (CTL’s)
 - Recognize Ag peptide presented by MHC Class I
 - Kill target cells expressing abnormal cytoplasmic proteins
 - Infected by intracellular pathogen - eg, virus
 - Killing
 - puncture cell membrane
 - induce programmed cell death or apoptosis

Natural Killer (NK) Cells

- Lymphocyte without BCR or TCR - “innate” like
- Don’t require prior contact or clonal expansion
- Receptors recognize distressed cells:
 - Virally infected
 - DNA damaged
 - Transformed (malignant)
- Also recognize cells opsonized by Ig
- Kill, using a mechanism similar to CTL’s
Innate vs. Adaptive Immunity

<table>
<thead>
<tr>
<th></th>
<th>Innate</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>On first contact</td>
<td>Immediate response</td>
<td>5-10 days for clonal expansion</td>
</tr>
<tr>
<td>Receptor Specificity</td>
<td>Broad classes of molecules</td>
<td>Highly specific for a single structure</td>
</tr>
<tr>
<td>Ligands</td>
<td>Microbial origin</td>
<td>Potentially any protein, lipid, or carbohydrate</td>
</tr>
<tr>
<td>Memory</td>
<td>None</td>
<td>Long-lived</td>
</tr>
<tr>
<td>Recurrent contact</td>
<td>Same response as previously</td>
<td>Rapid response tailored to pathogen</td>
</tr>
</tbody>
</table>

Autoimmunity:
Distinguishing native tissue from foreign pathogen

- Innate System - inherent in the receptors
- Directed at microbial molecules (PAMP's)
- Adaptive System - not inherent in the receptors
- Able to bind anything - protein, carbohydrate, lipid
- Need safeguards to ensure non-reactivity with native (self) molecules - that is, to maintain tolerance

One Layer of Safeguard:
T Cell Activation requires Innate/Adaptive Cooperation

- Naive T cells require two discreet activation signals
 - **Signal I:** TCR binding to peptide/MHC
 - **Signal II:** Co-stimulation provided by the APC
 - Involves binding of T cell CD28 to APC CD80 & 86
 - Occurs at contact site between T cell and APC

Summary

1. We are protected from dissolution at the hands of microbes by an army of specialists each of which provides an essential piece of a complex defense.
2. The innate arm, the most ancient, is the first to respond. It’s cells utilize evolutionarily conserved pathogen characteristics to recognize “danger” and act rapidly to tag, engulf, lyse, or wall off the invader.
3. The innate system simultaneously provides pathogen-specific information (in the form of MHC/peptides) and essential activation signals (in the form of CD80 and CD86) to the adaptive system resulting in helper T cell activation and differentiation.
4. a) CD4+ T cells provide cytokine and contact-dependent help to B cells, resulting in a highly specific, high affinity antibody response.
 - b) CD4+ T cell help and immunoglobulins provide reciprocal signals to the innate system, greatly facilitating phagocytosis and killing.
5. The adaptive system utilizes a unique gene rearrangement technique to generate awesome diversity and subtlety in antigen recognition: the lymphocyte repertoire.
6. T cell direction, required for the optimal immune response, is completely dependent on the peptides presented. Highly polymorphic MHC genes, and co-dominant expression of multiple MHC molecules help ensure that every individual can make a response to some part of every pathogen. However, not all MHC’s are alike - some are better than others at engendering a particular response. This may be antibacterial, antiviral, or anti-self.
Helpful Hints

- Read Sompayrac in full early
- Easy read, great for framework
- Good glossary at the back of Abbas
- List of surface molecules, Abbas Appendix II
- Searchable Janeway on line
 - [To top](http://www.ncbi.nlm.nih.gov/books/TocCcRid=mm.TOC&depth=2)
- Recent journal reviews listed on Courseworks for a different perspective