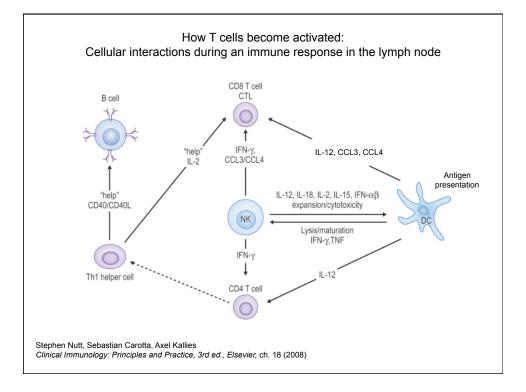
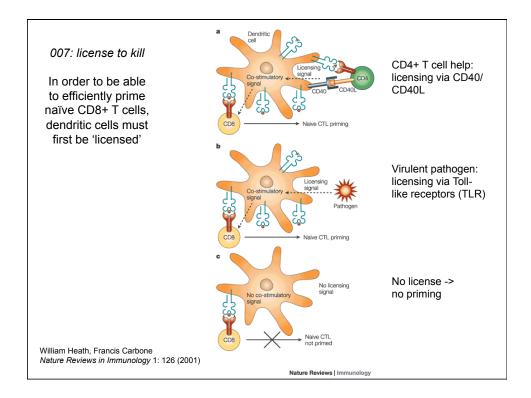
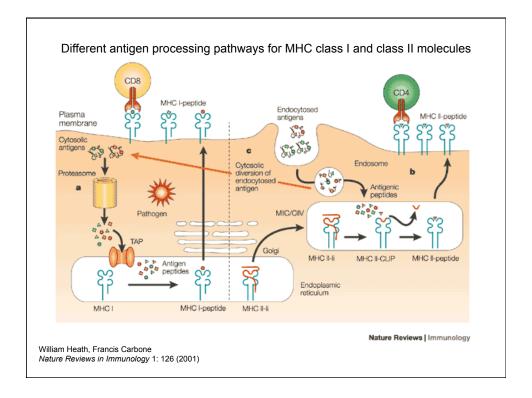
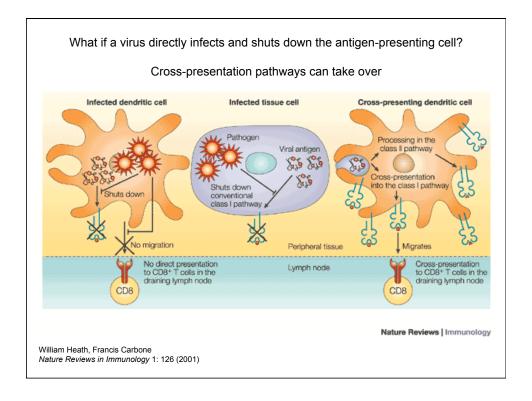
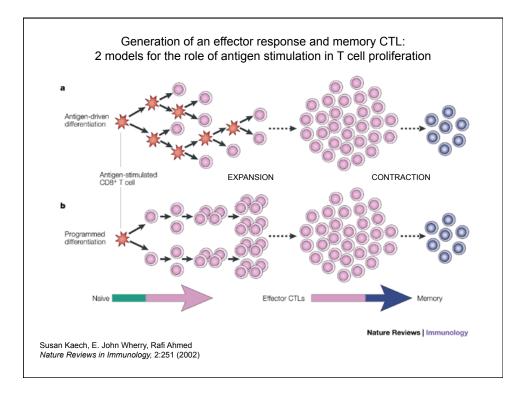

protect the host from viral, b recognize and des	<i>purpose:</i> bacterial and parasitic infection stroy malignant cells <i>a and similar cytokine secretion profiles</i>
Distinct modes o	f target recognition
Cytotoxic T lymphocytes	Natural killer cells
 Express CD8 (potentiates interaction with class I MHC molecule) Each T cell expresses a unique receptor, within a highly diverse repertoire generated by V(D)J recombination Scan MHC class I-peptide complexes, searching for pathogen or tumor-encoded antigens Preactivation and differentiation required 	 Invariant activating and inhibitory receptors Recognize 'missing self': the absence of class I MHC on the cell surface triggers NK attack (viral or tumor strategy to evade immune surveillance by CD8+ T cells) No preactivation required, but significantly potentiated by cytokines

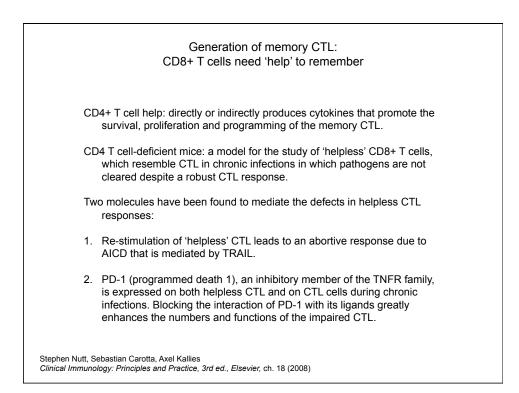


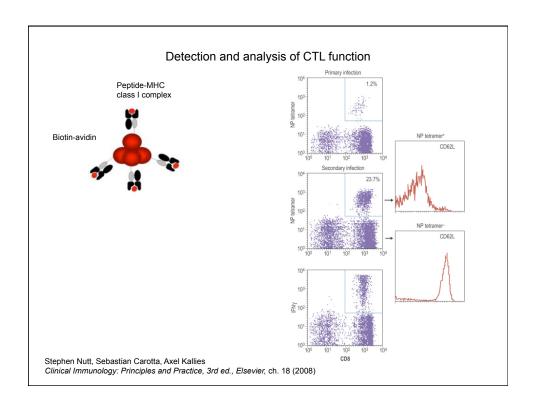


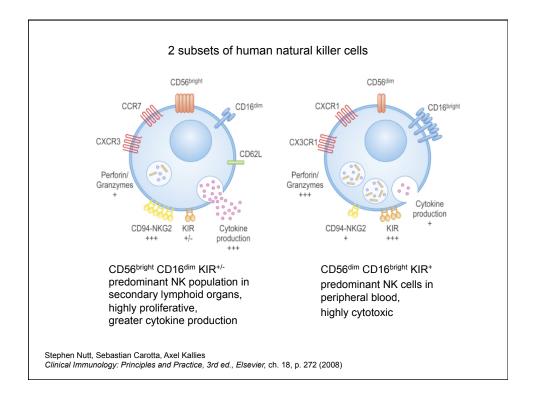




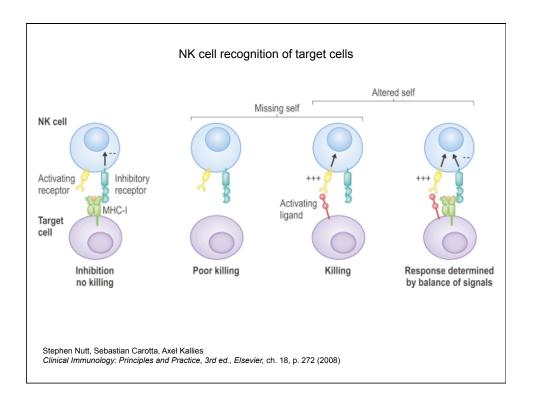


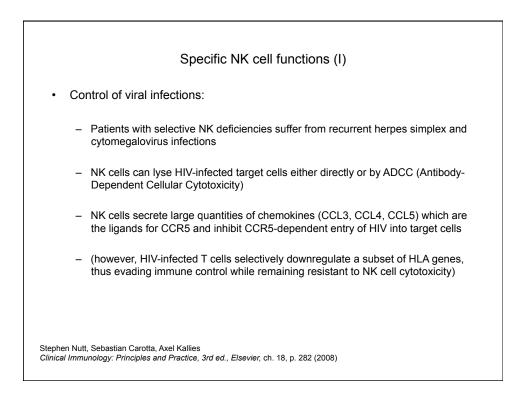




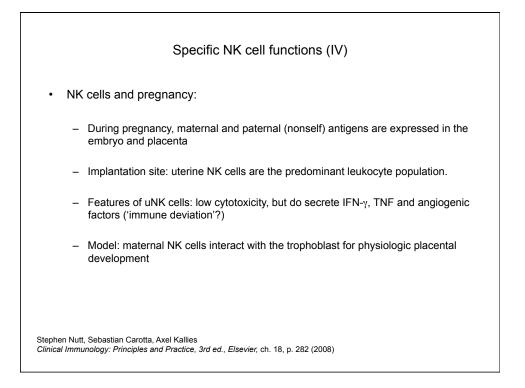


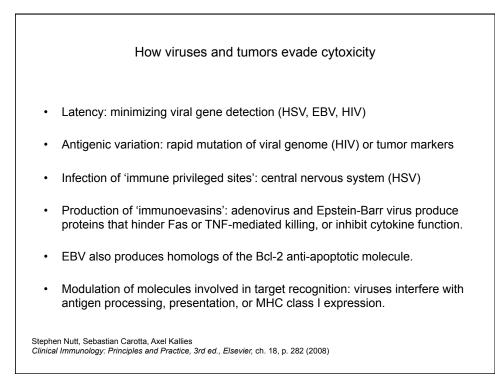
Natural Killer Cells


- Surveillance function: NK cells are found in:
 - Peripheral blood
 - Secondary lymphoid organs: bone marrow, spleen, activated lymph nodes
 - Peripheral tissue: liver, lung and the decidual lining of the uterus
- · Key cytokines:
 - Interleukin-15: required for NK cell development
 - IL-12, IL-18: promote activation, cytotoxicity, IFN-γ production
- Key surface markers:
 - CD16 (FcγRIII), binds IgG and promotes the antibody-dependent cytotoxicity (ADCC) of NK cells
 - CD56 (adhesion molecule),
 - Killer cell Immunoglobulin-like Receptor (KIR): recognize MHC class I molecules (HLA-A, B, C). A specific allele (KIR3DS1) can recognize HIV peptide in HLA-Bw4 and is associated with slow progression to AIDS.


Stephen Nutt, Sebastian Carotta, Axel Kallies Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 277 (2008)

Natura	Killer cells vs. Cytotoxic target recognition	
	NK cell	Cytotoxic T cell
Receptor type	NK receptor (numerous activating or inhibitory)	T cell receptor
Ligand type	Class I MHC, MICA/B, immune complexes, etc.	Peptide-MHC class I complex
Absence of class I MHC results in	Immediate cytotoxicity ('missing self')	Lack of recognition
Presence of class I MHC results in	Inhibitory signal to NK cell	TCR engagement


NK cell receptors		
Inhibitory receptors:	Activating receptors:	
 Recognize mostly MHC class I ligands with high affinity 	 Ligands include viral molecules and stress induced proteins Do not bind MHC class I molecules with high affinity 	
 Signal via ImmunoTyrosine Inhibitory Motifs (ITIM) Recruit phosphatases (SHP and SHIP) to prevent a cytotoxic response 	 Signal via ImmunoTyrosine Activating Motifs (ITAM) Use several signaling adaptors, including DAP12 	
Required for NK cell licensing		
Note: most NK cell receptors can also be expressed by some T cells after activation		
Stephen Nutt, Sebastian Carotta, Axel Kallies Clinical Immunology: Principles and Practice, 3rd ed., Elsevier	r, ch. 18, p. 272 (2008)	



Specific NK cell functions (II)
Control of malignant cells:
 A long-standing hypothesis: NK cells function in protective tumor immune surveillance (by killing tumors that have downregulated MHC class I to evade recognition and cytotoxicity by T cells)
 Difficult to test this theory in humans, but NK cells can reject tumors in mouse models
 NK cells activate dendritic cells by producing IFN-γ (thus enhancing tumor immunogenicity), and also by providing DC with increased access to tumor antigens by killing activity
Stephen Nutt, Sebastian Carotta, Axel Kallies Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 282 (2008)

	Specific NK cell functions (III)
Role in h	nematopoeitic stem cell transplantation:
•	eneic bone marrow transplantation (BMT): the "graft vs. leukemia" effect s leukemia via killing of residual malignant cells by donor cytotoxic T cells
– Howe	ever: transferred donor T cells can also mediate graft vs. host disease.
when	osal (controversial): BMT from a haplo-identical donor (eg from parent, e one-half of MHC is shared between parent and child) may provide eneic NK cells with an HLA haplotype that would potentiate the graft vs. emia effect (while minimizing graft vs. host effect).
	tian Carotta, Axel Kallies <i>Principles and Practice, 3rd ed., Elsevier</i> , ch. 18, p. 282 (2008)

s

1.	CD8 ⁺ T cells (adaptive immunity) and Natural Killer cells (innate immunity) cooperate to protect the host from viruses, intracellular bacteria and parasites, and in tumor surveillance
2.	Mechanisms of cellular cytoxicity shared between CD8 ⁺ T cells and NK cells include triggering apoptosis in the target cell via the perforin/granzyme pathways or cell surface receptors (Fas, TRAIL)
3.	Target recognition relies on either specific peptide presented in MHC class I (for CD8+ T cells) or the lack of MHC class I (for NK cells).
4.	CD8 ⁺ T cells require a licensing step (by activated dendritic cells) in order to acquire cytotoxic function and generate memory.
5.	Cross-presentation allows the priming of CD8+ T cells against viruses that attempt to evade the immune response by shutting down antigen presentation
6.	NK cell activation is determined by the 'balance' of positive and negative signals received through an array of surface receptors.