Transplantation Immunology

Mitchell S. Cairo, MD
Professor of Pediatrics, Medicine and Pathology
Chief, Division, Pediatric Blood & Marrow Transplantation
Children’s Hospital New York Presbyterian
Tel – 212-305-8316
Fax – 212-305-8428
E-mail – mc1310@columbia.edu

Objectives

• Understand the immunological mechanisms responsible for first and second set allograft skin rejection
• Conceptualize direct and indirect alloantigen recognition
• Learn the definition and mechanism(s) associated with the mixed lymphocyte reaction (MLR)

Types of Grafts

• Autologous (self)
 e.g., BM, peripheral blood stem cells, skin, bone
• Syngeneic (identical twin)
• Allogeneic (another human except identical twin)
• Xenogeneic (one species to another)

Innate & Adaptive Immunity

Dranoff et al Nature Reviews Cancer, 4: 11; 2004

Rejection

• First Set Rejection
 Skin graft in mice 7-10 days
• Second Set Rejection
 Skin graft in mice in 2-3 days

Mechanisms

• Foreign alloantigen recognition
• Memory lymphocytes (adaptive immunity)
• Can be adoptively transferred

Types of Grafts

• Autologous
 BM, peripheral blood stem cells, skin, bone
• Syngeneic (identical twin)
• Allogeneic (another human except identical twin)
• Xenogeneic (one species to another)

Objectives

• Distinguish and compare the pathological mechanisms and description of hyperacute, acute and chronic solid organ vs. bone marrow allograft rejection
• Begin to understand the mechanisms of central and peripheral immunological tolerance
• Appreciate the general & specific indication for bone marrow transplantation and essential components for development of graft vs. host disease (GVHD)
MHC Restricted Allograft Rejection

First & Second Allograft Rejection

AlloAntigen Recognition

- Major Histocompatibility Complex (MHC)
 - Class I HLA A, B, C bind to TCR on CD8 T-Cell
 - Class II DR, DP, DQ bind to TCR on CD4 T-Cell
 - Most polymorphic genes in human genome
 - Co-dominantly expressed

- Direct presentation (Donor APC)
 - Unprocessed allogeneic MHC

- Indirect presentation (Host APC)
 - Processed peptide of allogeneic MHC

Map of Human MHC

T-Cell Recognition of Peptide-MHC Complex

Developmental Dendritic Cell Formation

Wu et al Immunity, 2007
Direct and Indirect AlloAntigen Recognition

Mixed Lymphocyte Reaction (MLR)

• Definition & Mechanism
 - In vitro test of T-cell regulation of allogeneic MHC
 - Stimulators (donor-irradiated mononuclear cells)
 - Responders (recipient mononuclear cells)
 - Measure proliferative response of responders (tritiated thymidine incorporation)

• Requirements
 - Can be adoptively transferred
 - Require co-stimulation
 - Require MHC
 - Require Class I differences for CD8 T-cell response
 - Require Class II differences for CD4 T-cell response

Antigen Recognition & Immunological Synapse

Mixed Lymphocyte Reaction (MLR)

Pathological Mechanism of Rejection

<table>
<thead>
<tr>
<th>Solid Organ</th>
<th>Bone Marrow/PBSC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Hyperacute
 - Minutes to hours
 - Preexisting antibodies (IgG)
 - Intravascular thrombosis
 - History of blood transfusion, transplantation, or multiple pregnancies

• Acute Rejection
 - Few days to weeks
 - CD4+ CD8 T-cells
 - Humoral antibody response
 - Parenchymal damage & Inflammation

• Chronic Rejection
 - Chronic fibrosis
 - Accelerated atherosclerosis
 - 6 months to yrs
 - CD4, CD8, (Th2)
 - Macrophages

• Primary Graft Failure
 - 10 – 30 days
 - Host NK Cells
 - Lysis of donor stem cells

• Secondary Graft Failure
 - 30 days – 6 months
 - Autologous T-Cells
 - CD4 + CD8
 - Lysis of donor stem cells
Immune Mechanisms of Solid Organ Allograft Rejection

- **ABO Compatible**
 - Prevent hyperacute rejection in solid organs
 - Prevent transfusion reaction in BM/PBSC
- **MHC allele closely matched**
- **Calcineurin Inhibitors**
 - Cyclosporine binds to Cyclophilin
 - Tacrolimus (FK506) binds to FK Binding Proteins (FKBP)
 - Calcineurin activates Nuclear Factor of Activated T-Cells (NFAT)
 - NFAT promotes expression of IL-2
- **IMPDH Inhibitors** (Inosine Monophosphate Dehydrogenase)
 - Mycophenolate Mofetil (MMF)
 - Inhibits guanine nucleotide synthesis
 - Active metabolite is Mycophenolic acid (MPA)

Hyperacute, Acute, Chronic Kidney Allograft Rejection

- **Inhibition of mTOR**
 - Rapamycin binds to FKBP
 - Inhibits IL-2 signaling
- **Antibodies to T-Cells**
 - OKT3 (Anti-CD3)
 - Daclizumab (Anti-CD25)
- **Confolexoids**
 - Prednisolone/Probenecid
 - Inhibit Macrophage Cytokine Secretion
- **Anti-inflammatory**
 - Infliximab (Anti-TNF-α Antibody)
 - Blocks B7 Co-Stimulation
 - CTLA-4-Ig
 - Inhibits T-cell Activation
 - Induces Tolerance
- **Block CD40 Ligand Binding**
 - Anti-CD40 Ligand
 - Inhibits Macrophage & Endothelial Activation

Mechanisms of Acute Allograft Rejection

Mechanisms of T-Cell Immunosuppressants
Incidence of Renal Allograft Survival in Influenced by HLA Matching

Mechanism of T-Cell Activation vs. Tolerance

Foxp3+ Regulatory T-Cells Inhibit Naïve T-Cell Differentiation

Human Natural Killer Cells

Mechanisms of T-Cell Activation vs. Inhibition

Model of Human NK Cell Development
NK Cell Interaction with DC and T-Cells

Caligiuri et al, Blood 2008

Regulation of NK Cell Activation vs. Inhibition

Caligiuri et al, Blood 2008

General Indications of Blood and Marrow Transplantation

- Dose intensity for malignant tumor (DI)
- Graft vs Tumor (GVT)
- Gene replacement
- Graft vs Autoimmune (GVHI)
- Gene therapy
- Marrow failure

Specific Indications (Pediatric)

Malignant

- Leukemia
- Solid Tumors
- Lymphomas

Conditioning Therapy

- Myeloablative – TBI Based
- Myeloablative - Non TBI Based
- Non-Myeloablative

Regulation of NK Cell Activation and Inhibition

Caligiuri et al, Blood 2008

General Indications of Blood and Marrow Transplantation

- Dose intensity for malignant tumor (DI)
- Graft vs Tumor (GVT)
- Gene replacement
- Graft vs Autoimmune (GVHI)
- Gene therapy
- Marrow failure
Engraftment

- Myeloid: Absolute neutrophil count ≥ 500/mm³ x 2 days after nadir
- Platelet: Platelets ≥ 20 k/mm³ x 7 days untransfused after nadir

Chimerism (Allogeneic)

- Fluorescence in situ Hybridization (FISH) (Sex mismatch)
- VNTR (Molecular)

Complications (Acute)

- Graft failure (GF)
- Graft vs Host Disease (GVHD)
- Mucositis
- Veno-occlusive disease (VOD)
- Hemorrhagic cystitis
- Infections
- Persistent and/or recurrent disease

Essential Components Required for GVHD

- Immuno-incompetent host
- Infusion of competent donor T-cells
- HLA disparity between host and donor

Graft vs Host Disease

- Hyperacute: Day 0 – 7
- Acute: Day 7 – 100
- Chronic: Day 100 ≥

Acute Graft vs Host Disease

- Dermal (Skin): Maculopapular Palms / Soles Pruritic ± Cheeks / Ears / Neck / Trunk Necrosis / Bullae
- Hepatic: Hyperbilirubinemia Transaminemia
- Gastrointestinal: Diarrhea Abdominal pain Vomiting Nausea

Risk Factors of GVHD

- HLA disparity: 6/6 > 5/6 > 4/6
- Allo stem cell source: MRD > UCB > UBM
- Donor Age
- Sex incompatibility
- CMV incompatibility
- Immune suppression
Common Prophylactic Immune Suppressants

- Methotrexate (MTX)
- Cyclosporine (CSP)
- Prednisone (PDN)
- Tacrolimus (FK506)
- Mycophenolate Mofetil (MMF)
- Anti Thymocyte Globulin (ATG)
- Alemtuzumab (Campath)
- T-Cell Depletion

Chronic GVHD

- **Skin:** Rash (lichenoid, sclerodermatous, hyper/hypo pigmented, flaky), Alopecia
- **Joints:** Arthritis, arthritis, contractures
- **Oral/Ocular:** Sjogren’s Syndrome
- **Hepatic:** Transaminemia, hyperbilirubinemia, cirrhosis
- **GI:** Dysphagia, pain, vomiting, diarrhea, abdominal pain
- **Pulmonary:** Bronchiolitis obliterans (BO), Bronchiolitis obliterans Organizing Pneumonia (BOOP)
- **Hematologic/Immune:** Cytopenias, dysfunction
- **Serositis:** Pericardial, pleural

Summary

- First set donor tissue rejection from a non-identical MHC recipient is a primary adaptive immune response
- Second set donor tissue rejection for a non-identical MHC recipient involves memory antigen host T & B cells
- Alloantigen antigen direct and indirect presentation involves donor and host APC, respectively

- T-cell activation & proliferation requires immunological synapse with TCR/MHC and co-simulating ligands & receptors
- Tissue rejection maybe hyperacute (preexisting Ab) acute (days to weeks) and/or chronic (months to years)
- Allogenic stem cell transplantation may result in hyperacute (1-7d), acute (7-10d) and/or chronic (100d – 5yr) GVHD.