Transplantation Immunology

Mitchell S. Cairo, MD

Professor of Pediatrics, Medicine and Pathology Chief, Division, Pediatric Blood & Marrow Transplantation Children's Hospital New York Presbyterian Tel – 212-305-8316 Fax – 212-305-8428 E-mail – mc1310@columbia.edu

Objectives

- Distinguish and compare the pathological mechanisms and description of hyperacute, acute and chronic solid organ vs. bone marrow allograft rejection
- Begin to understand the mechanisms of central and peripheral immunological tolerance
- Appreciate the general & specific indication for bone marrow transplantation and essential components for development of graft vs. host disease (GVHD)

Types of Grafts

- Autologous (self)
 - e.g., BM, peripheral blood stem cells, skin, bone
- Syngeneic (identical twin)
- Allogeneic (another human except identical twin)
- Xenogeneic (one species to another)

MHC Restricted Allograft Rejection

First & Second Allograft Rejection

AlloAntigen Recognition

- Major Histocompatibility Complex (MHC)
 - Class I HLA A, B, C bind to TCR on CD8 T-Cell
 - Class II DR, DP, DQ bind to TCR on CD4 T-Cell
 - Most polymorphic genes in human genome
 - Co-dominantly expressed
- Direct presentation (Donor APC)
 - Unprocessed allogeneic MHC
- Indirect presentation (Host APC)
 - Processed peptide of allogeneic MHC

Regulation of T-cell Activation and Tolerance by B7- CD28/CTLA-4 Pathway

Mixed Lymphocyte Reaction (MLR)

• Definition & Mechanism

- In vitro test of T-cell regulation of allogeneic MHC
- Stimulators (donor-irradiated monnuclear cells)
- Responders (recipient mononuclear cells)
- Measure proliferative response of responders (tritiated thymidine incorporation)

• Requirements

- Can be adoptively transferred
- Require co-stimulation
- Require MHC
- Require Class I differences for CD8 T-cell response
- Require Class II differences for CD4 T-cell response

Mixed Lymphocyte Reaction (MLR)

Pathological Mechanism of Rejection

Solid Organ

- <u>Hyperacute</u> – Minutes to hours
 - Minutes to nours
 - Preexisting antibodies (IgG)
 - Intravascular thrombosis
 - Hx of blood transfusion, transplantation or multiple pregnancies
- Acute Rejection
 - Few days to weeks
 - CD4 + CD8 T-Cells
 - Humoral antibody response
 - Parenchymal damage & Inflammation
 - Chronic Rejection
 - Chronic fibrosis
 - Accelerated arteriosclerosis
 - 6 months to yrs
 - CD4, CD8, (Th2)
 - Macrophages

Bone Marrow/PBSC

Not Applicable

- Primary Graft Failure
 - 10 30 Days
 - Host NK Cells
 - Lysis of donor stem cells

Secondary Graft Failure

- 30 days 6 months
 - Autologous T-Cells
 - CD4 + CD8
 - Lysis of donor stem cells

Mechanisms of Acute Allograft Rejection

Prevention & Treatment of Allograft Rejection

- ABO Compatible (Prevent hyperacute rejection in solid organs) (Prevent transfusion reaction in BM/PBSC)
- MHC allele closely matched
- Calcineurin inhibitors
 - Cyclosporine binds to Cyclophillin
 - Tacrolimus (FK506) binds to FK Binding Proteins (FKBP)
 - Calcineurin activates Nuclear Factor of Activated T-Cells (NFAT)
 - NFAT promotes expression of IL-2
- IMPDH Inhibitors (Inosine Monophosphate Dehydrogenase)
 - Mycophenolate Mofetil (MMF)
 - Inhibits guanine nucleotide synthesis
 - Active metabolite is Mycophenolic acid (MPA)

Incidence of Renal Allograft Survival in Influenced by HLA Matching

Foxp3⁺ Regulatory T-Cells Inhibit Naïve T-Cell Differentation

Model of Human NK Cell Development

General Indications of Blood and Marrow Transplantation

- Dose intensity for malignant tumor (DI)
- Graft vsTumor (GVT)
- Gene replacement
- Graft vs Autoimmune (GVHI)
- Gene therapy
- Marrow failure

Conditioning Therapy

Myeloablative - TBI Based

Myeloablative - Non TBI Based

Non-Myeloablative

Engraftment		
• Myeloid	Absolute neutophil count ≥ 500/mm ³ x 2 days after nadir	
Platelet	Platelets ≥ 20 k/mm³ x 7 days untransfused after nadir	
Chimerism (Allogeneic)		
• Fluorescence in situ Hybridization (FISH) (Sex mismatch)		
• VNTR	(Molecular)	

Essential Components Required for GVHD

- Immuno-incompetent host
- Infusion of competent donor T-cells
- HLA disparity between host and donor

Graft vs Host Disease

 Hyperacute 	Day 0 – 7
Acute	Day 7 – 100
• Chronic	Day 100 ≥

Acute Graft vs Host Disease

• Dermal (Skin) :	Maculopapular Palms / Soles Pruritic ± Cheeks/ Ears/ Neck / Trunk Necrosis / Bullae
• Hepatic :	Hyperbilirubinemia Transaminemia
Gastrointestinal :	Diarrhea Abdominal pain Vomiting Nausea

Common Prophylactic Immune Suppressants

Methotrexate	(MTX)
Cyclosporine	(CSP)
Prednisone	(PDN)
Tarcrolimus	(FK506)
Mycophenolate Mofitel	(MMF)
Anti Thymocyte Globulin	(ATG)
Alemtuzamab	(Campath)
T-Cell Depletion	

Chronic GVHD

- Skin: Rash (lichenoid, sclerodermatous, hyper/hypo pigmented, flaky), Alopecia
- Joints: Arthralgia, arthritis, contractures
- Oral/Ocular : Sjogren's Syndrome
- Hepatic: Transaminemia, hyperbilirubinemia, cirrhosis
- GI: Dysphagia, pain, vomiting, diarrhea, abdominal pain
- Pulmonary: Bronchiolitis obliterans (BO), Bronchiolitis obliterans Organizing Pneumonia (BOOP)
- Hematologic/Immune: Cytopenias, dysfunction
- Serositis : Pericardial, pleural

Summary

- First set donor tissue rejection from a nonidentical MHC recipient is a primary adaptive immune response
- Second set donor tissue rejection for a nonidentical MHC recipient involves memory antigen host T & B cells
- Alloantigen antigen direct and indirect presentation involves donor and host APC, respectively

