

Tumor Immunology

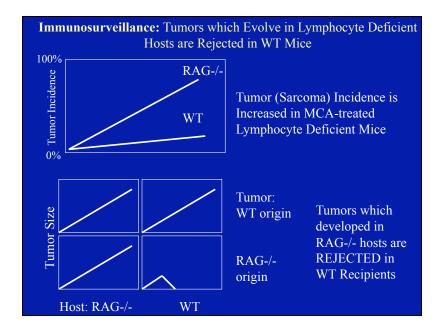
• Does it exist?

i.e., does the immune system recognize and eradicate cancer cells? Is there any evidence for immunological surveillance (Burnett and Thomas)?

- How can the immune system recognize cancer if it is essentially self-tissue? (Tolerance)
- If it does not- can it be made to do so? (Immunization designed to Break Tolerance) Where is the danger-the innate activator?

The Good News/Bad News Story

The immune system can destroy self-tissue quite effectively in autoimmunity, and in a tissue-specific (antigen-specific) manner: (thyroiditis, hepatitis, pancreatitis (diabetes), vitiligo, ITP, AIHA, graft rejection etc.). So, self-tissue destruction can be potent.

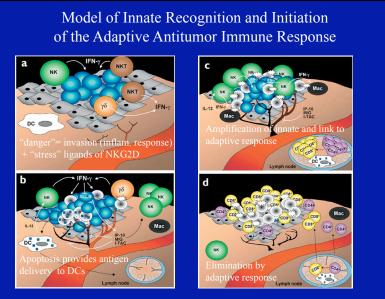

• Are there ongoing anti-tumor immune responses in patients with cancer?

 Spontaneous remissions are rare but can occur, renal cell CA, melanoma, and are associated with anti-tumor Abs and CTLs. TIL cells (tumor infiltrating cells) include CTLs that recognize melanoma antigens/peptides (6/11 patients). But these CTLs were anergic:could not kill targets or produce γ -IFN. Many patients make anti-tumor antibodies, but are mostly IgM-will not efficiently induce effector responses-and may indicate a lack of T cell priming.

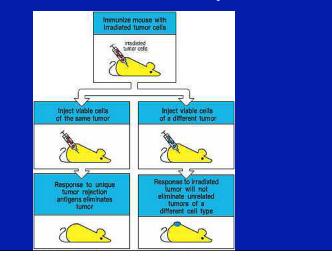
• So..the good news is that immune recognition of tumor antigens occurs but the bad news is that this occurs without activation of immune effector responses.

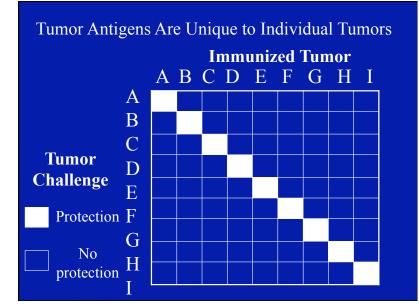
More "good" news Evidence for Immunological Surveillance in Man Cancer Incidence Increases in Immunosuppressed

- Increased incidence of malignancies in HIV patients: EBV lymphoma, KS, squamous cell CA –but many of these are virally induced malignancies; this merely shows that eliminating a T cell response against **viral** antigens allows for the outgrowth of virally-transformed cells. Common variety neoplasms (colon, breast, prostate, lung, etc.,) may be seen with increased frequency as HIV patients live with their disease longer
- In transplant associated EBV lymphomas (presumably arise after the loss of EBV specific CTLs associated with T-cell depleted allo-BMT. Cures are achievable by infusion of donor T cells (reconstitute CTL response). Again loss of an anti-viral responses is implicated. (post-transplant patients are also at increased risk for melanoma and sarcoma).



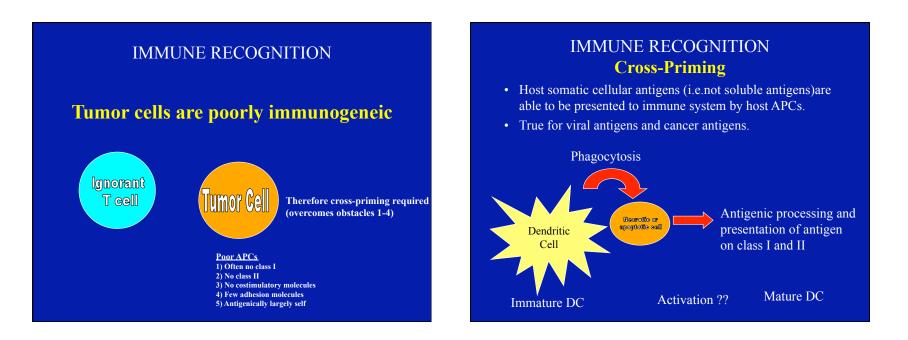
	Phenotype or depletion	Immunodeficiency	Tumor susceptibility
nmune surveillance:	RAG-2	T, B and NKT cells	MCA-induced sarcomas ⁴⁹ Spontaneous intestinal neoplasia ⁴⁹
Innate system	RAG-2 × STAT I (RkSk)	T, B and NKT cells Insensitive to IFN- γ and IFN- α/β	MCA-induced sarcomas ⁴⁹ Spontaneous intestinal and mammary neoplasia ⁴⁹
	BALB/c SCID	T, B and NKT cells	MCA-induced sarcomas ¹⁰⁰
NK,	Perforin	Lack of perforin	MCA-induced sarcomas ^{42,45,46} Spontaneous disseminated lymphomas ^{43,47}
KT, gamma/delta T	TCR α281≁	Subset of NKT cells	MCA-induced sarcomas ^{42,46,100}
	Anti-asialo-GMI antibody	NK cells and activated macrophages	MCA-induced sarcomas ¹⁰⁰
ls	Anti-NKI.I antibody	NK and NKT cells	MCA-induced sarcomas46,100
	Anti-Thy1 antibody	T cells	MCA-induced sarcomas ^{46,100}
	αβT cell≁	αβT cells	MCA-induced sarcomas ⁵⁰
	γõ⊤ cell≁	γõ⊤ cells	MCA-induced sarcomas ⁵⁰ DMBA/TPA-induced skin tumors ⁵⁰
Ν-γ,	STAT I≁	Insensitive to IFN- γ and IFN- α/β	MCA-induced sarcomas ^{41,49} Wider tumor spectrum in STAT I ^{-/-} × p53 ^{-/-} (ref. 41)
-12 (APC)	IFNGR1 receptor	Insensitive to IFN- γ	MCA-induced sarcomas ^{41,49} Wider tumor spectrum in IFN-γ receptor
	IFN-γ"	Lack of IFN-γ	MCA-induced sarcomas ⁴² C57BL/6: Spontaneous disseminated lymphomas ⁴³ BALB/c: Spontaneous lung adenocarcinoma ⁴³
Functional nventional T cells	$Perforin^{\leftarrow} \times IFN\text{-}\gamma^{\leftarrow}$	Lack of perforin and IFN- $\!\gamma$	MCA-induced sarcomas ⁴² Spontaneous disseminated lymphomas ⁴³
	IL-12	Lack of IL-12	MCA-induced sarcomas ⁴⁶
	WT + IL-12	Exogenous IL-12	Lower incidence of MCA-induced sarcomas ¹⁰¹


More good news/ Evidence for Immunological Surveillance

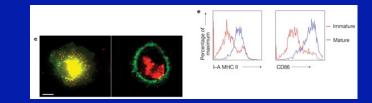

• In mice, absence of IFN-γR, STAT1, IL-12, perforin, RAG, NK cells: All of these genetic deficiencies have an increased incidence of MCA (carcinogen) induced malignancies.

• Highly immunogenic tumors emerge in RAG -/- mice spontaneously; these tumors grow in RAG -/- (in absence of immune selective pressure) but are rejected in WT mice (in presence of normal immune response).

Immunization with Tumor Cells Can Induce Protective Immune Response



Antigen Class	Antigen	Advantages/
		Disadvantages
Whole Cell	Protein lysate or tumor RNA based expression	Universal (Autoimmunity may be a problem)
Antigen- Specific	Peptide, DNA or recombinant protein	"Customized" therapy are required for these approaches. For whole proteins "antigen profile" of each tumor is required. Peptides require additional info. of indiv. HLA-type. Antigenic modulation or loss (overcome by attacking multiple targets and antigens required for transformed phenotype).

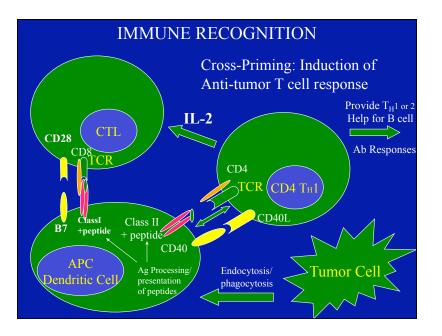

Candidate Tumor Antigens..many more to come through genomics

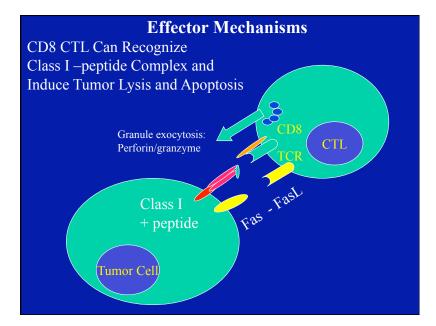
- Shared Tumor Antigens (common across tumors and tumor types) Allows single therapy to be applicable for many patients
- 1. Cancer/testes genes
- 2. Differentiation associated antigens
- 3. Others including gangliosides, MUC-1, etc.,
- Unique Tumor Antigens (requires tumor specific therapy) Antigenic modulation would potentially interfere with malignant phenotype.
- 1. Overexpressed proto-oncogenes: EGFR, HER2
- 2. Point mutations: ras, β-catenin, CDC27, CDK4, Bcr/Abl
- 3. Viral Antigens: Human papilloma virus, EBV, Hepatitis B

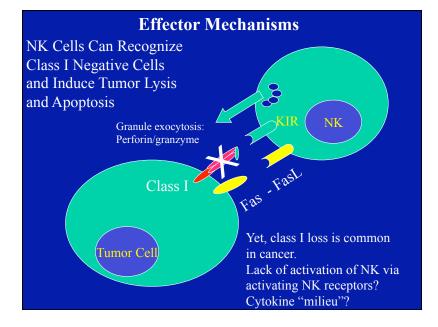
Antigen Class	Antigen	Malignancy
Tumor Specific Antigen	Immunoglobulin Idiotype TCR Mutant ras Mutant p53 p21-/bcr-abl fusion	B lymphoma, MM T cell lymphoma Colorectal, lung, bladder, Head and neck cancer Pancreatic, Colon, Lung CML, ALL
Developmental Antigens (cancer/testes genes)	MAGE-1, MAGE-3, GAGE family, 20 genes on the X chromosome Telomerase	Melanoma but also in colorectal, lung, gastric Various
Viral Antigens	Human Papilloma Virus EBV	Cervical, penile cancer Burkitt's lymphoma, nasopharyngeal Ca, post- Tx lymphoproliferative
Tissue-specific self- antigens (Differentiation antigens)	Tyrosinase, gp100,trp-1, trp-2 Prostatic acid phosphatase, PSA Thyroglobulin α-Fetoprotein	Melanoma Prostate Thyroid Liver Cancer
Over-expressed self- antigens	Her-2/neu CEA Muc-1	Breast and lung cancer Colorectal, lung, breast Colorectal, pancreatic, ovarian, lung

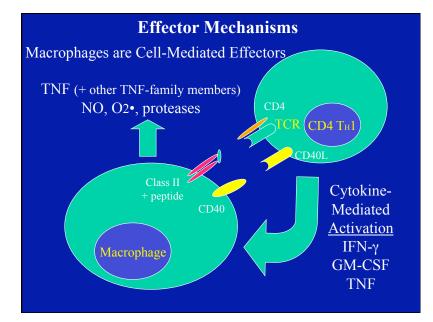
DC Maturation

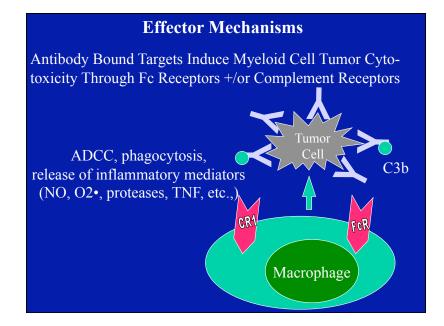
Maturation Factors

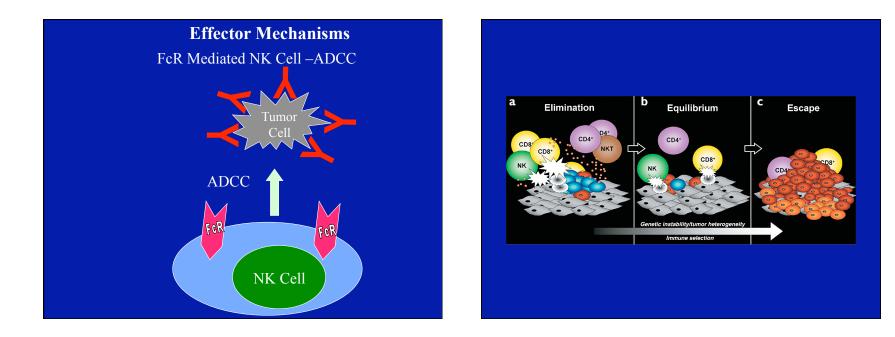

- T cell signals (encounter with specific Memory CD4 cell): CD40L
- **Microbial stimuli:** TLR ligands: LPS, hypomethylated DNA (CpG), dsRNA (poly dI:dC), peptidoglycans, StAg,
- Inflammatory Cytokines: TNF, IFN, (products of either Mφ, NK or T cells)

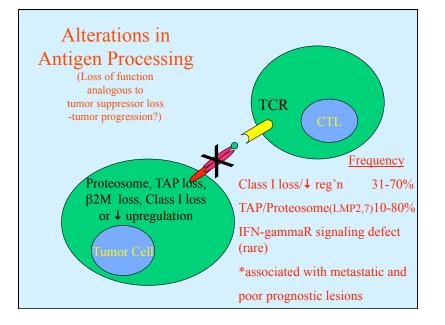

Effective antigen presentation by "cross-priming" enhanced by DC activation/maturation (CD40L, TNF, others)


• Peripheral immature DCs migrate to LN upon activation by antigen/cytokines where they may encounter T cells.


Maturation marked by


- Upregulation of antigen processing and surface expression of class I and II molecules (signal 1)
- Upregulation of co-stimulatory molecules CD40, B7 (CD80,86), adhesion molecules (ICAM-1) and cytokines for interaction and activation of antigenspecific T cells (signal 2).



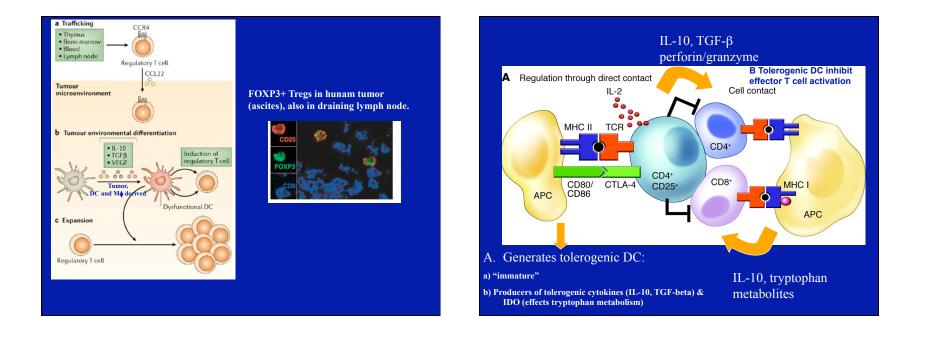


Tumor Evasion: Two separate problems

- Tumor antigens are not recognized by immune response-poorly immunogenic *(Immunologically ignorant).*
- Tumors are resistant to or inhibit immune cytotoxic responses.
- (active *suppression*—either dampen "priming" or avoid/inhibit/resist effector cell function).

Bad News/Tumor Evasion Resistance to Effector Response (Tumor Cell)

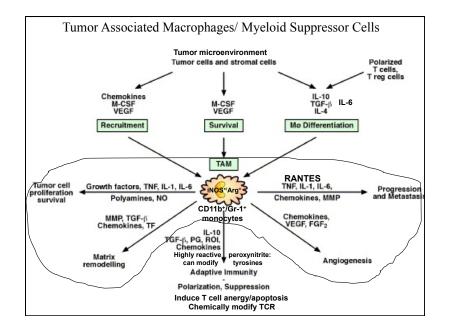
- Loss of antigen presentation capacity by tumor
- Access to tumors may be limited by poor vascularity.
- Intrinsic resistance (anti-apoptotic genes).


*Resistance to death receptor pathways: Reduction of Fas receptor or enhanced expression of c-FLIP by tumors may render tumors resistance to fas-mediated apoptosis. Similarly, tumors commonly lose TRAIL receptors or express "decoy" receptors.

<u>*Upregulation of "survival" pathways...akt, Bcl-2.</u>

- Antigen modulation (antibody-mediated endocytosis of surface antigen)
- Loss of tumor antigen expression: <u>Tumor heterogeneity</u> (need to target multiple antigens)-and possibly proteins essential for transformation/growth.

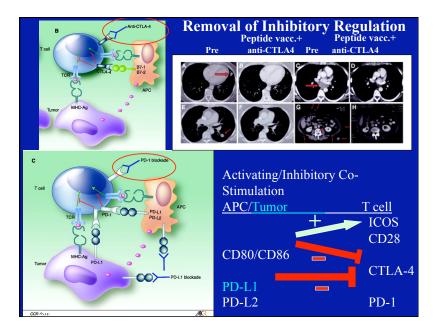
More Bad News/Tumor Evasion Resistance to Effector Response


- 2 pages of problems...not good
- Tumor cell or Tumor-associated-macrophage production of local factors that suppress T cell responses (TGF-β, IL-10) and DCs (VEGF, and TGF, IL-10).
- Conventional T cells may be suppressed by Treg cells preferentially induced or recruited by tumor.
- **(early clinical promise with Treg depleting approaches and/or anti-CTLA4 antibodies).

Cancer and Inflammation: Seed and Soil Hypothesis

--Stromal inflammation as tumor "promoter" --"tolerogenic" healing/remodeling/repair

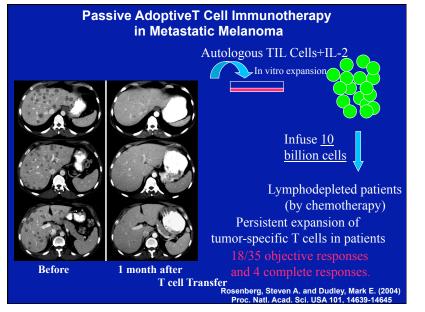
Malignancy	Inflammatory stimulus
Bladder cancer	Schistosomiasis
Gastric cancer	H. pylori-induced gastritis
MALT lymphoma	H. pylori
Hepatocellular CA	Hepatitis virus (B and C)
Kaposi's sarcoma	HHV8
Lung CA	Silica, Asbestos
Mesothelioma	Asbestos
Ovarian cancer	Salpingitis/talc/ovulation/endometriosi
Colorectal cancer	Inflammatory bowel disease
Esophageal cancer	Barrett's metaplasia
Papillary thyroid CA	Thyroiditis
Prostate cancer	Prostatitis

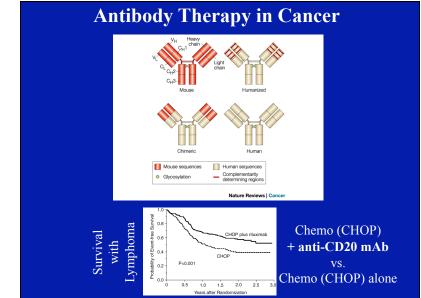

Macrophage Products that Drive Tumorogenesis

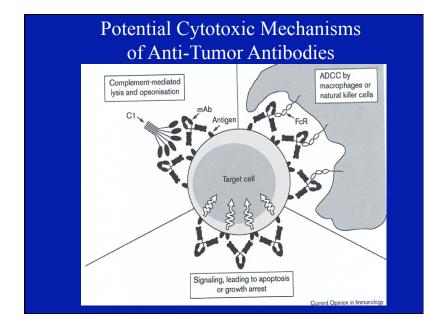
Growth and survival Basic FGF, EGF, hepatocyte growth factor, PDGF, IL-6, TNF, polyamines, PGE2

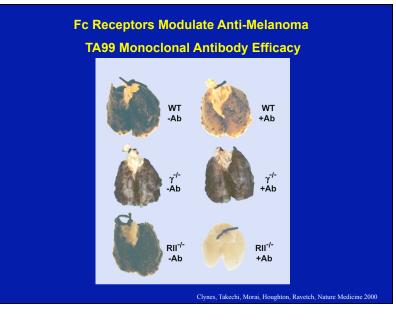
- Angiogenesis VEGF, MMP-9, IL-1, IL-8, urokinase-type plasminogen activator (uPA), CXCL1, CXCL8, HIF-1, HIF-2, PGE2
- Tissue invasion and metastases Chemokines, PGE2, matrix metalloproteinases, uPA, plasmin
- Mutations Superoxide, peroxynitrite
- Inhibition of T cell responses IL-10, TGF-β, indoleamine-2,3-dioxygenase, PGE2, superoxide, peroxynitrite. arginase

On the near horizon: Removing immuno-inhibitory pathways

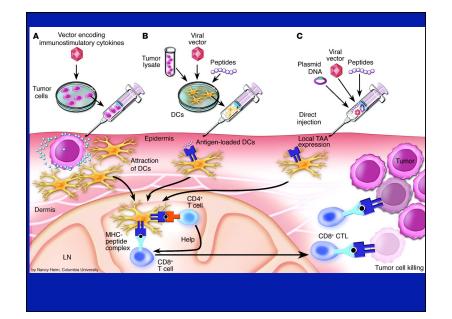

- Anti-CTLA4 Abs: 15% clinical response in melanoma, prostate, etc., Autoimmunity seen in many patients. Combined therapy with tumor vaccines ongoing.
- **Treg depletion** (IL-2 Diptheria toxin conjugate)
- Anti-PD-1: Reversal of T cell exhaustion?




Strategies for induction of anti-tumor Immune Responses


-Passive-

- Adoptive transfer of T cells: Antigenic specific T cell clones-requires HLA-restricted "customized" therapy or cytokine-enhanced antigen-non-specific T cells (LAK cells). Has worked for EBV lymphoproliferative disorders.
- Monoclonal and engineered antibodies:
- 1. Humanized/chimeric mAbs: Herceptin (anti-HER2), Rituxan (anti-CD20), anti-idiotype (custom therapy), anti-EGFR (Erbitux), CAMPATH (anti-CD52), anti-VEGF (targets neovasculature, Avastin).
- 2. Immune conjugates ("smart bombs"):
- tumor-targeted antibodies can deliver toxic payloads. mAb-toxin (Mylotarg: anti-CD33 calicheamicin), mAbchemo, mAb-isotope (anti-CD20 Zevalin and Bexxar).



Strategies for induction of antitumor Immune Responses

ACTIVE IMMUNIZATION

- Goal is to define tumor antigens and then use them in an immunostimulatory fashion.
- How to induce immune response and break tolerance?: Essentially "the dirty little secret" of immunologists*the adjuvant effect*; effective immunization usually requires mixing antigen with agents which both promote uptake of antigen by APCs as well as activate and recruit APCs to vaccine site (e.g. classic adjuvants: Alum or Complete Freund's Adjuvant: mineral oil/water emulsion + heat killed bacillus; molecular adjuvants: TLR ligands, CD40L).

How to present antigen: clinical trials

- Systemic cytokines (e.g.IFNα); upregulate HLA/antigen processing, mature and activate APC
- Whole cell and adjuvant
- Tumor antigen protein or peptide and adjuvant
- Peptide and cytokines
- Turn cancer cell into an APC or a recruiter of APCs: transfect/infect tumor with costim. gene (B7) or with cytokine gene (GM-CSF), DC tumor cell fusion.
- Gene gun (DNA vaccination:tumor specific gene+/- costimulatory+/-cytokine genes)
- Autologous DC's "pulsed" with protein, peptides etc. Attempts to deliver tumor peptide for cytosolic class I loading in activated DCs.

Tumor Immunology: Summary

- 1) Immunological recognition of tumor occurs.
- 2) Tumors emerge in individuals having successfully overcome immunological surveillance.
- 3) Evasion mechanisms include reduced tumor antigen presentation and local immunoregulatory factors: inhibitory cytokines and cells.
- Tumor development may both be promoted by chronic inflammation and be sustained by the tolerogenic tumor:stroma microenvironment.
- 5) Reversal of tolerogenic response is the goal of immunotherapy Passive immunization (antitumor antibodies, adoptive T cell therapy). Active immunization (vaccine=antigen plus adjuvant). <u>The goal is to induce antigen specific effector T cells while eliminating</u> <u>negative immunoregulatory pathways.</u>