17. Transplantation

LEARNING OBJECTIVES:

- Successful allogeneic transplantation exploits the plasticity and regenerative capacity of the immune system
- 2. ABO and Rh matching and screening for preformed antibodies prevent hyperacute rejection
- 3. HLA matching reduces acute rejection, but immunosuppression is required to prevent (or treat) acute rejection
- 4. Chronic rejection is poorly understood, but indirect allo-recognition and alloantibodies play roles
- 5. Donor organs carry donor dendritic cells that migrate to different tissues and create mixed allogeneic chimerism
- 6. Immunosuppression increases the risk of infection
- 7. Cyclosporin and Tacrolimas bind different targets (Cyclophilin and FKBP, respectively), but these complexes both inhibit calcineurin
- 8. Rapamycin binds FKBP but this complex inhibits mTOR (not calcineurin)
- 9. Effective drugs were used to interrogate the biology of lymphocyte cell signaling
- 10. Anti-T cell antibodies (monoclonal and polyclonal) are used to treat acute rejection
- 11. Host SC may repopulate grafts, but their significance is unknown
- 12. Pre-treatment with donor stem cells that establishes hematologic chimerism may allow solid organ transplants without immunosuppression
- 13. Allogeneic stem cell transplantation (aSCT) is a therapy for bone marrow disorders and certain malignancies but has high morbidity
- 14. Mature T cells in SC grafts mediate both Graft v. Host and Graft v. Tumor effects

SUMMARY:

- 1. Solid organ transplant is successfully employed to treat organ failure and replace certain tissues
- 2. Hyperacute rejection is prevented by matching and screening
- 3. Acute rejection is successfully treated by existing pharmaceuticals
- 4. Chronic rejection needs new ideas and new therapies
- 5. Managing episodes of acute rejection involves increasing immunosuppression
- 6. Allogeneic Stem Cell Transplantation (aSCT) invokes both rejection and Graft v. Host (GvH) responses
- 7. aSCT to treat malignant disease involves tradeoffs between Graft v. Host (GvH) and Graft v. Tumor responses