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UTOIMMUNE diseases, with the exception
of rheumatoid arthritis and autoimmune thy-
roiditis, are individually rare, but together they

affect approximately 5 percent of the population in
Western countries.

 

1,2

 

 They are a fascinating but poor-
ly understood group of diseases. In this review, we
define an autoimmune disease as a clinical syndrome
caused by the activation of T cells or B cells, or both,
in the absence of an ongoing infection or other dis-
cernible cause. We will discuss a classification of auto-
immune disease that distinguishes diseases caused by
generalized defects in lymphocyte selection or ho-
meostasis from those caused by aberrant responses to
particular antigens. We will consider genetic suscep-
tibility to autoimmune disease, environmental and in-
ternal triggers of autoreactivity, changes in pathologic
processes as the disease progresses, and multiple mech-
anisms of tissue injury, and we will conclude with a
survey of new therapeutic approaches.

For many years, the central dogma of immunology
focused on the clonal deletion of autoreactive cells,
leaving a repertoire of T cells and B cells that recog-
nize specific foreign antigen. However, our present
view acknowledges that a low level of autoreactivity
is physiologic

 

3

 

 and crucial to normal immune func-
tion. Autoantigen helps to form the repertoire of ma-
ture lymphocytes, and the survival of naive T cells

 

4

 

and B cells

 

5

 

 in the periphery requires continuous ex-
posure to autoantigens. Since there is no fundamen-
tal difference between the structure of self antigens
(or autoantigens) and that of foreign antigens, lym-
phocytes evolved not to distinguish self from foreign,
as some have speculated, but to respond to antigen
only in certain microenvironments, generally in the
presence of inflammatory cytokines.

 

6

 

 Since autoreac-
tivity is physiologic, the challenge is to understand
how it becomes a pathologic process and how T cells
and B cells contribute to tissue injury.

A

 

CLASSIFICATION OF AUTOIMMUNE 
DISEASES

 

For clinicians, autoimmune diseases appear to be ei-
ther systemic (as in the case of systemic lupus erythe-
matosus) or organ-specific (as in the case of type 1
diabetes mellitus). This classification, although clini-
cally useful, does not necessarily correspond to a dif-
ference in causation. A more useful division distin-
guishes between diseases in which there is a general
alteration in the selection, regulation, or death of
T cells or B cells and those in which an aberrant re-
sponse to a particular antigen, self or foreign, causes
autoimmunity. An example of a general defect is the
absence of the Fas protein or its receptor — proteins
involved in cell death — and a representative antigen-
specific disorder is the demyelination syndrome that
follows enteric infection with 

 

Campylobacter jejuni

 

.
This classification is useful in deciding on therapy,
which may differ according to the pathogenic mech-
anism. Although this mechanistic classification can be
used for animal models, we often cannot determine
whether a human disease is due to a global abnormal-
ity in lymphocyte function or an antigen-specific ab-
normality.

Alterations that lower the threshold for the survival
and activation of autoreactive B cells often cause the
production of multiple autoantibodies, as in the case
of the antinuclear and anti-DNA antibodies in sys-
temic lupus erythematosus.

 

7-32

 

 Low levels of these
autoantibodies are the rule in all people. Other auto-
antibody-mediated diseases seem to reflect a loss of
B-cell tolerance to a particular antigen. For example,
the antiganglioside antibodies that cause the Guillain–
Barré syndrome appear to arise in the face of intact
general tolerance of self by B cells.

 

33

 

 Genetic alter-
ations with global effects on the function of regulato-
ry T cells or cytokine production often lead to inflam-
matory bowel disease.

 

34-36

 

 This process may reflect
enhanced activation of T cells with an exuberant re-
sponse to gut flora. Changes in the repertoire of
T cells may cause a systemic illness or organ-specific
abnormalities. For example, thymectomy in neonatal
mice eliminates a subgroup of critical regulatory cells
and causes a wasting disease or an autoimmune at-
tack on the thyroid, gastric parietal cells, or ovaries,
depending on the genetic background of the mouse.

 

37

 

This example illustrates why the distinction between
systemic and organ-specific disease is not always use-
ful for understanding mechanisms of autoimmunity.

In some organ-specific diseases, autoreactivity
against a ubiquitous autoantigen develops, but the dis-
ease is restricted to a particular organ. For example,
the ribonucleoprotein antigens targeted in Sjögren’s
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syndrome and the transfer RNA synthetases in poly-
myositis are ubiquitous intracellular proteins,

 

38

 

 yet the
pathologic effects of these diseases are relatively re-
stricted. Presumably, the antigen has greater accessi-
bility in affected tissues, although the patterns of
lymphocyte migration may also determine sites of
inflammation.

 

39

 

 The differential expression of trans-
port molecules on various subgroups of T cells was
reviewed by von Andrian and Mackay.

 

40

 

 The expres-
sion of many antigens is also developmentally regu-
lated, making autoreactivity hazardous only at certain
stages of growth. For example, the antibodies against
the Ro (SSA) antigen in Sjögren’s syndrome and sys-
temic lupus erythematosus bind to the conducting sys-
tem in the fetal heart, causing complete heart block,
but they do not affect the adult heart.

 

41

 

 Antibodies
against desmoglein cause pemphigus in adults but
not in neonates, because only one of the two desmo-
gleins in neonatal skin is a target of these antibodies.

 

42

 

GENETIC SUSCEPTIBILITY

 

Epidemiologic studies have demonstrated that ge-
netic factors are crucial determinants of susceptibili-
ty to autoimmune disease. There is familial clustering,
and the rate of concordance for autoimmune disease
is higher in monozygotic twins than in dizygotic
twins.

 

43-45

 

 A few autoimmune diseases, such as auto-
immune lymphoproliferative syndrome and the syn-
drome of autoimmune polyglandular endocrinopathy
with candidiasis and ectodermal dysplasia (APECED),
are due to mutations in a single gene. Even in these
conditions, other genes modify the severity of disease
and not all who possess the mutant gene manifest the
disease. Autoimmune lymphoproliferative syndrome
is an autosomal dominant disorder involving a defect
in the Fas protein or its receptor. The Fas pathway
mediates apoptosis, which down-regulates immune
responses.

 

46

 

 The autoreactivity in this syndrome re-
sults from an inability to trigger apoptosis of activat-
ed immune cells after encounters with microbial an-
tigens. APECED is caused by a mutation in the gene
encoding the autoimmune regulator protein (

 

AIRE

 

),
which occurs predominantly in the thymic medulla
but also in other tissues.

 

47

 

 This protein, presumably
a transcriptional regulator, has a role in the selection
of T cells in the thymus

 

48

 

 or in their peripheral reg-
ulation. The disease is characterized by both auto-
immunity and immunodeficiency. These two abnor-
malities also coexist in other disorders, acquired or
inherited, that are characterized by a loss of function
of T cells or B cells, such as the acquired immuno-
deficiency syndrome, complement deficiencies, and
IgA deficiency.

Most autoimmune diseases are multigenic, with
multiple susceptibility genes working in concert to
produce the abnormal phenotype. In general, the
polymorphisms also occur in normal people and are
compatible with normal immune function. Only when

present with other susceptibility genes do they con-
tribute to autoimmunity.

 

49,50

 

 Some of these genes
confer a much higher level of risk than others; for
example, the major histocompatibility complex makes
an important contribution to disease susceptibility.
Most autoimmune diseases are linked to a particular
class I or class II HLA molecule,

 

51

 

 but this association
may require linkage with another gene such as that
encoding tumor necrosis factor 

 

a

 

 (TNF-

 

a

 

) or com-
plement. In the case of ankylosing spondylitis, diabe-
tes, and rheumatoid arthritis, however, the reproduc-
tion of the disease in transgenic animals expressing
particular human HLA antigens strongly indicates that
the class I or class II molecule itself confers suscep-
tibility to disease.

 

52,53

 

Some HLA alleles protect against disease even when
a susceptibility allele is present.

 

49,50

 

 For example, the
HLA-DQB1*0602 allele protects against type 1 dia-
betes even if the HLA-DQB1*0301 or DQB1*0302
susceptibility gene is present,

 

44

 

 and the presence of
this protective allele is an exclusion criterion for cur-
rent diabetes-prevention trials. The mechanism of this
protection is not understood. Finally, the association
of HLA alleles with a particular disease may vary
among different populations. The class II HLA-
DRB1*0401 and DRB1*0404 alleles are strongly as-
sociated with rheumatoid arthritis in persons of north-
ern European ancestry,

 

54

 

 but not in black or Hispanic
populations.

 

55,56

 

Genetic engineering of mice has led to the iden-
tification of at least 25 genes that can contribute to
an autoimmune diathesis when they are deleted or
overexpressed. These genes encode cytokines, anti-
gen coreceptors, members of cytokine- or antigen-
signaling cascades, costimulatory molecules, molecules
involved in pathways that promote apoptosis and
those that inhibit it, and molecules that clear antigen
or antigen–antibody complexes. Two critical lessons
have been learned from these models. First, whether
a particular gene or mutation causes a disease depends
on the overall genetic background of the host: both
disease susceptibility and the disease phenotype that
result from an alteration of a single gene depend on
other genes. Second, some genetic defects can predis-
pose patients to more than one autoimmune disease,
so that several diseases may share common pathogen-
ic pathways. This observation suggests the possibility
of using common therapeutic strategies in different
autoimmune diseases.

The findings of genetic studies in humans are con-
sistent with these ideas. There are, for example, allelic
variants of the gene encoding cytotoxic-T-lympho-
cyte–associated protein 4 (CTLA-4), a T-cell surface
molecule that down-regulates activated T cells. One
such polymorphism causes a small decrease in the in-
hibitory signal mediated by CTLA-4 and is associated
with type 1 diabetes, thyroid disease, and primary bil-
iary cirrhosis.

 

57-59

 

 More often, however, a genetic locus
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rather than a single gene has been linked to a suscep-
tibility to autoimmune disease, and many loci are
emerging as potentially important in more than one
disease.

 

49,50

 

 The clinical observation that different
autoimmune diseases often coexist within a family
strongly suggests that some genes at these loci pre-
dispose patients to more than one disease.

 

60,61

 

It is possible that vulnerability of the target organ
to immune-mediated damage is also genetically de-
termined. A variable threshold to renal and cardiac
damage has been clearly demonstrated in animal
models.

 

62,63

 

 Genetic variation in vulnerability to au-
toimmune-induced damage may underlie the clinical
observation that persons with the same serologic ab-
normality do not necessarily have the same tissue ab-
normality. 

In summary, the predisposition to autoimmune
disease represents the net effect of enhancing and pro-
tective genes.

 

64,65

 

 Since each susceptibility gene confers
its own level of risk, the predisposition to autoimmu-
nity depends on which combination of susceptibility
and protective genes is present, not solely on the
number of each. Genes also control the vulnerability
of target organs and the accessibility of antigens in
target organs.

 

INITIATION OF AUTOREACTIVITY

 

Environmental Triggers

 

Even in a genetically predisposed person, some
trigger — an environmental exposure or a change in
the internal environment — is usually required for
frank autoreactivity. Studies of genetically similar pop-
ulations living in different conditions strongly sug-
gest the importance of environmental triggers. For
example, the incidence of both type 1 diabetes and
multiple sclerosis in a population changes as the
members migrate to different regions.

 

66,67

 

 That an
environmental antigen elicits the antibodies against
desmoglein I involved in pemphigus is strongly sug-
gested by epidemiologic studies of pemphigus folia-
ceus in Brazil, where the incidence of disease declines
as the distance from regions where the disease is en-
demic increases.

 

68

 

 Such observations, along with the
lower-than-expected rate of disease concordance
among monozygotic twins,

 

69,70

 

 suggest that an envi-
ronmental factor exposes an autoimmune diathesis.
In the case of most autoimmune diseases, however,
the trigger is unknown.

 

INFECTIOUS AGENTS

 

Microbial antigens have the potential to initiate
autoreactivity through molecular mimicry, polyclonal
activation, or the release of previously sequestered
antigens. Molecular mimicry has clearly been demon-
strated in herpes keratoconjunctivitis in mice: T cells
that react to the viral protein UL6 cross-react with
a peptide derived from a corneal antigen.

 

71

 

 In humans,
rheumatic fever represents an autoimmune response

triggered by streptococcal infection and mediated by
cross-reactivity between streptococcal and cardiac
myosin.

 

72-74

 

 In the Guillain–Barré syndrome and its
variants, antibody cross-reactivity has been demon-
strated between human gangliosides and lipopolysac-
charides of 

 

C. jejuni.

 

33

 

 In autoimmune diabetes,
T cells recognize both a peptide derived from the
autoantigen glutamic acid decarboxylase and a high-
ly analogous peptide from coxsackievirus P2-C pro-
tein.

 

75

 

 And in multiple sclerosis, T cells react with both
a peptide from the autoantigen myelin basic protein
and peptides from Epstein–Barr virus, influenzavirus
type A, and human papillomavirus.

 

76

 

 In these exam-
ples infection could cause the initial activation of the
lymphocytes that mediate these diseases and autoan-
tigen could sustain the activation that persists even
after the eradication of the infectious agent. In the case
of most autoimmune diseases in humans, however,
there is no compelling evidence that the antigenic
cross-reactivities identified in laboratory studies are
of pathogenic importance.

Microbial infection can also cause polyclonal acti-
vation of autoreactive lymphocytes. This is presumed
to be the mechanism underlying the increased inci-
dence of autoimmune disease in rodents exposed to
microbial pathogens.

 

77

 

 Microbes that kill cells can
cause inflammation, the release of sequestered anti-
gens, and autoimmunity.

 

77,78

 

 Although nonspecific ac-
tivation resulting from infection has not been proved
to be a factor in humans, it is clear that inflammation,
even in the absence of infection, can trigger polyclo-
nal activation and autoreactivity. In this way, cardiac
ischemia and necrosis cause heart-specific autoreac-
tivity and myocarditis, through either the activation
of anergic cells by inflammatory mediators or the ac-
tivation of naive autoreactive cells in an inflammato-
ry setting.

 

79

 

Noninfectious Triggers

 

Many autoimmune diseases are much more com-
mon in women than in men, and estrogens exacer-
bate systemic lupus erythematosus in murine models
of the disease by altering the B-cell repertoire in the
absence of inflammation.

 

80

 

 Drugs can also alter the
immune repertoire. Procainamide regularly induces
antinuclear antibodies and sometimes induces a lupus-
like syndrome. Moreover, systemic lupus erythemato-
sus is a regular feature of homozygosity for deficiencies
of the C1 or C4 components of the complement cas-
cade; and such deficiencies cause, among other prob-
lems, defective elimination of dead cells (Fig. 1).

 

70,81

 

Finally, foreign substances may act as haptens and ren-
der autoantigens immunogenic. Penicillins and ceph-
alosporins, for example, can bind to the red-cell
membrane and generate a neoantigen that elicits an
autoantibody that causes hemolytic anemia.

 

82

 

 Gliadin,
a component of wheat gluten, is a substrate for tis-
sue transglutaminase, an enzyme in many cells, and
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the complex formed by these proteins induces anti-
bodies against both gliadin and transglutaminase.

 

83

 

There is mounting evidence that blockade of
TNF-

 

a

 

, which is beneficial in Crohn’s disease and
rheumatoid arthritis, can induce antinuclear antibod-
ies and perhaps even systemic lupus erythematosus
and multiple sclerosis in certain persons.

 

84,85

 

 TNF-

 

a

 

has inhibitory effects on activated T cells,

 

86,87

 

 but how
it induces autoimmunity is unknown.

 

Loss of Regulatory Cells

 

Several kinds of regulatory cells are important
in controlling autoreactivity: CD1-restricted T cells,
T cells with 

 

g

 

/

 

d

 

 receptors, CD4+CD25+ T cells,
and T cells that produce cytokines that suppress patho-
genic autoreactive cells. Some of these regulatory cells
— for example, CD4+CD25+ T cells — must ma-
ture in the thymus

 

37

 

; others require activation by au-
toantigens in the periphery. 

Alterations in the number and function of regula-
tory cells may contribute to autoimmunization. In
monozygotic twins who are discordant for diabetes,
for instance, levels of CD1-restricted T cells are
greatly diminished in the affected twin.

 

88

 

 The anti-
gens that activate regulatory T cells in the body are
unknown, and the way in which these cells exert their
pressure on immune responses is only partly under-
stood. Most important, the reason for their reduced
numbers in patients with diabetes or other autoim-
mune diseases is unknown.

 

DISEASE PROGRESSION

 

Epitope Spreading

 

As an autoimmune disease progresses from initial
activation to a chronic state there is often an increase
in the number of autoantigens targeted by T cells
and antibodies (“epitope spreading”)

 

89,90

 

 and, in some
cases, a change in participating cells, cytokines, and
other inflammatory mediators. Both autoreactive
T cells and B cells contribute to epitope spreading.
Activated autoreactive B cells function as antigen-
presenting cells; they present novel (cryptic) peptides
of autoantigens

 

91,92

 

 and express costimulatory mole-
cules. They also generate peptides that have not pre-
viously been presented to T cells; thus, T cells will
not have become tolerant to such cryptic peptides.
Over time, multiple novel peptides within a mole-
cule can activate T cells.

Furthermore, if the B cell binds and takes in not
a single protein but a complex of multiple proteins,
epitopes from each protein in the complex will be
processed and presented to naive T cells. The cascade
continues, with T cells activating additional autore-
active B cells and B cells presenting additional self
epitopes, until there is autoreactivity to numerous
autoantigens. By then, the identity of the initiating
antigen can no longer be determined.

 

Pathogenic Mechanisms 

 

It has become apparent, primarily through studies
in animals, that the initial mechanisms causing autore-
activity in an autoimmune disease may be superseded
by different effector cells and inflammatory mediators
as the disease progresses (Fig. 2). Naive lymphocytes
are activated at the initiation of disease and may con-
tinue to be recruited by epitope spreading later in
the disease, but it is unknown whether naive cells or
memory cells cause progression and flares of disease.
There are many examples of the evolution of the
mechanisms as an autoimmune disease progresses. For
example, antibody against Fas protein prevents the
onset of multiple sclerosis in mice but blocks remis-
sion if it is given after the onset of disease because
it averts the death of activated cells.

 

95-97

 

 Moreover,
cytokines can have different effects, depending on the
stage of the autoimmune disease: transforming growth
factor 

 

b

 

, for example, suppresses autoreactivity when
the disease begins,

 

98,99

 

 but once the disease is estab-
lished, it contributes to fibrotic organ damage.

 

100

 

The fact that the cells and soluble mediators of in-
jury can change over time has tremendous implica-
tions for therapy; interventions that are effective ear-
ly may be less efficacious later on or may even be
harmful. The unpredictability of these effects is am-
ply illustrated by the clinical efficacy of the blockade
of TNF-

 

a

 

 in rheumatoid arthritis and Crohn’s dis-
ease, at the cost of inducing antinuclear antibodies
in up to 10 percent of treated patients and systemic
lupus erythematosus in a few patients.

 

84

 

TISSUE INJURY

 

Both autoreactive T cells and autoantibodies can
damage tissues. T-cell cytolysis of target cells can be
mediated through perforin-induced cellular necrosis
or through granzyme B–induced apoptosis.

 

101

 

 It has
been suggested that type 1 helper T cells are critical to
the induction of autoimmune disease through the re-
cruitment of inflammatory cells and mediators, where-
as type 2 helper T cells protect against disease.

 

102

 

 How-
ever, it is now clear that cytokines produced by type 1
or type 2 helper T cells and even transforming growth
factor 

 

b

 

 can cause tissue injury.

 

103-105

 

Autoantibodies also cause damage through mech-
anisms that include the formation of immune com-
plexes, cytolysis or phagocytosis of target cells, and
interference with cellular physiology. Interference with
cellular physiology, first identified in connection with
antibodies against acetylcholine in patients with my-
asthenia gravis

 

106

 

 and antibodies against the receptor
for thyrotropin in patients with Graves’ disease,

 

107

 

 is
a common pathway to tissue injury. In patients with
pemphigus, antibodies against desmoglein induce the
release of a protease that mediates the formation of
blisters.

 

108

 

 In patients with the antiphospholipid-anti-
body syndrome, antibodies bind to soluble factors
in blood that prevent the activation of the clotting
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cascade, thus triggering coagulation.

 

109,110

 

 Moreover,
some autoantibodies that bind to surface receptors
are taken up by living cells.

 

111-113

 

 Whether such anti-
bodies then interfere with cellular physiology is con-
troversial.

Increasingly, the distinction made between T-cell–
mediated and antibody-mediated autoimmune disease
appears inappropriate. Data showing that IgG and

products of complement activation are present at
sites of demyelination suggest that antibodies con-
tribute to the lesions of multiple sclerosis.

 

104

 

 Instead
of dividing autoimmune diseases into those caused by
effector T cells and those caused by antibodies, it
seems more appropriate to assume that both antibody
and effector T cells often cause tissue damage in es-
tablished disease.

 

Figure 1.

 

 Defects in B-Cell Activation.
B-cell activation is mediated by antigen binding to the B-cell receptor. This results in the activation of kinases. Many other molecules
affect the process; some enhance activation and some inhibit activation. The overexpression (shown in blue) of genes encoding
cell-surface signaling molecules that enhance activation can result in autoimmunity. Two such defects have been described: one is
a mutation of CD45 that results in the overexpression of CD45, the other is transgenic overexpression of CD19. Two defects of in-
hibitory signaling pathways have been described. The first is a knockout (shown in red) of the inhibitory Fc

 

g receptor II. This re-
ceptor recognizes the Fc region of immunoglobulin in the immune complexes, and when it is cross-linked with the B-cell receptor
(which recognizes the antigen in the immune complex), it inhibits the activation of B cells. The second is a knockout of any of the
components of the CD22 signaling complex — phosphorylated (P) CD22, lyn (which phosphorylates CD22), and the protein tyrosine
phosphatase SHP-1 — that mediates the down-regulation of the activation of B cells. The other types of defects that can result in
excessive activation of B cells are related to decreased clearance of antigen in the form of immune complexes as a result of the
underexpression of C1q and C4. C1q and C4 bind to C3d, which, in turn, bind to the immune complexes. Autoimmunity can also
result from defective clearance of apoptotic particles owing to the underexpression of DNase I, which breaks down apoptotic par-
ticles, and serum amyloid protein (SAP), which coats the particles and enhances their clearance. All the defects shown lead to a
systemic lupus erythematosus phenotype. Systemic lupus erythematosus can also be induced by the overexpression of costimu-
latory molecules such as BAFF (B-cell–activating factor belonging to the tumor necrosis factor family), the underexpression of reg-
ulatory molecules such as PD-1 (programmed death 1), and the inhibition of apoptotic pathways.
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Figure 2. Defects in Cytokine Production or Signaling That Can Lead to Autoimmunity.
For example, underexpression of interleukin-1–receptor antagonist leads to arthritis,93 whereas defects in interleukin-3 lead to a
demyelinating syndrome.94 Since the substances listed are pleiotropic molecules, it is hard to predict on the basis of their known
functions what will happen when they are overexpressed or underexpressed. Multiple different defects can lead to the same dis-
ease, especially in the case of inflammatory bowel disease and systemic lupus erythematosus. These molecules are starting to be
exploited therapeutically, as exemplified by the use of etanercept and interleukin-1–receptor antagonist for rheumatoid arthritis.
Drugs that block costimulation are also becoming available. STAT denotes signal transducer and activator of transcription.
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THERAPEUTIC STRATEGIES FOR SPECIFIC 
DISEASES

Two major challenges lie ahead if the promise of
new therapeutic approaches is to be fulfilled. First,
we need reproducible and reliable serologic and clin-
ical methods of assessing the risk of a specific disease
and of identifying active disease and remission. The
use of the criteria of the American College of Rheu-
matology for a response in patients with rheumatoid
arthritis allows clinicians to compare the efficacy of
various drugs in different trials.114 The establishment
of international standards for screening tests for dia-
betes will enhance the reliability of these assays.115,116

Registries of patients are being established for rarer
autoimmune diseases to allow clinical studies to pro-
ceed.117,118 Nevertheless, there is an urgent need to
identify markers of disease activity, remission, and
impending relapse in most autoimmune diseases.

The second challenge is to determine which ap-
proach to use in each disease. Perhaps different ther-
apeutic interventions are needed at different stages
in the disease process. It is clear, for example, that the
treatments that block the recruitment of naive cells
differ from those that prevent the activation of mem-
ory cells. The hope is that some approaches will work
in more than one disease.

Rheumatoid Arthritis

The treatment of rheumatoid arthritis has been
markedly improved by the recognition that bone
erosions occur early in the disease and that therapy
should be instituted promptly in many patients. Al-
though methotrexate remains the first-line disease-
modifying agent, there are some promising new drugs.
The fact that activated macrophages contribute to
synovial inflammation in this disease has led to the
development of modulators of macrophage-derived
cytokines. Blockade of TNF-a by a soluble p75
TNF-a receptor–IgG1 fusion protein (etanercept) or
a monoclonal antibody against TNF-a (infliximab) is
highly effective in preventing erosions when it is
used in combination with methotrexate. Etanercept
can also be used alone, since it is not immunogenic
in humans.119,120 Blockade of TNF-a is also effective
in Crohn’s disease121 and is useful in refractory pso-
riatic arthritis122 and ankylosing spondylitis,123 a dis-
ease for which no other disease-modifying therapy
has been available. Leflunomide, a pyrimidine antag-
onist that blocks the enzyme dihydroorotate dehydro-
genase, thereby blocking the synthesis of DNA, has
an efficacy similar to that of methotrexate and can be
used either alone or in combination with methotrex-
ate.124,125 Blockade of interleukin-1 receptors with a re-
combinant interleukin-1–receptor antagonist is less
effective than blockade of TNF-a in patients with
rheumatoid arthritis, but it may retard the develop-
ment of bone erosions.119 The long-term safety of
these new agents, particularly with respect to the risk

of infections, cancer, and other autoimmune diseas-
es, remains to be ascertained.

Multiple Sclerosis

Advances have been made in the treatment of
multiple sclerosis with the use of interferon beta-1a
and copolymer I.66 Although the indications for and
timing of the use of these agents are still debated, a
recent study suggests that interferon beta-1a can de-
lay the onset of frank disease when given after a first
episode of optic neuritis.126 Copolymer I is a non-
specific inhibitor of T cells in vitro,127 although it may
also act by immune deviation from type 1 to type 2
helper T cells.128 Treatment with altered peptide lig-
ands derived from myelin basic protein was efficacious
in murine models of the disease, but two recent phase
1 trials of such peptides were associated with clinically
significant toxicity: one caused hypersensitivity reac-
tions,129 and the second resulted in exacerbations of
multiple sclerosis.130 Thus, studies of animal models of
disease cannot substitute for clinical trials, and these
must proceed with caution.

Psoriasis

Blockade of TNF-a, with or without methotrex-
ate, has been effective in refractory psoriasis. Psoria-
sis responded to treatment with interleukin-10 in sev-
eral small and short-term clinical trials.131 Benefit was
also achieved with the use of CTLA-4–Ig, a recom-
binant fusion protein in which the extracellular do-
main of CTLA-4 is linked to the constant region of
IgG1. CTLA-4–Ig blocks the activation of most na-
ive T cells as well as both primary and secondary an-
tibody responses.132 However, CTLA-4–Ig exacer-
bated diabetes in a mouse model in which activation
of regulatory cells is thought to prevent initiation of
the disease.133 A number of other biologic agents
have also been successfully used to treat psoriasis in
small pilot studies. These include antibodies against
CD4,134 antibodies against the high-affinity interleu-
kin-2 receptor CD25 (daclizumab),135 and antibodies
against the CD11a component of the adhesion mol-
ecule leukocyte function–associated antigen type 1
(also referred to as a1b2 integrin and CD11aCD18)
that mediates migration of T cells into the skin.136,137

A humanized antibody against CD11a is currently
being evaluated in a clinical trial in a large cohort of
patients with psoriasis.

Type 1 Diabetes

Therapeutic efforts in type 1 diabetes have fo-
cused on prevention. Relatives of patients with dia-
betes who are at risk for the disease can be identified
with near certainty; however, screening of the gen-
eral population is associated with high false positive
rates that preclude intervention studies.44 Prevention
trials are currently assessing the efficacy of inducing
antigen-specific immune tolerance through the intra-
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venous or subcutaneous administration of insulin in
persons at risk who have evidence of decreased beta-
cell mass or through the oral administration of insu-
lin in those who have antibodies against insulin but
in whom insulin secretion is normal. Initial results
with oral insulin have been disappointing,138 but the
results of systemic insulin are not yet available.

Systemic Lupus Erythematosus

Clinical trials in patients with systemic lupus erythe-
matosus are plagued by the wide range of disease
manifestations; the relapsing–remitting nature of the
disease, which results in high rates of response in
groups given a placebo; and the lack of standardized
criteria for remission. Whether or not abnormal se-
rologic results should prompt treatment in the ab-
sence of clinical signs of the disease remains debatable.
Blockade with CTLA-4–Ig or antibodies against
CD40 ligand has been highly effective in the preven-
tion or treatment of nephritis in murine models139,140

but not in humans. Two recent clinical trials of mono-
clonal antibodies against CD40 ligand were unsuc-
cessful; one did not show efficacy, and the other
found unexpected toxicity.141,142 Polymorphisms of the
interleukin-10 gene are associated with systemic lupus
erythematosus; a pilot study suggests that treatment
of active disease with antibodies against interleukin-
10 may be effective.143

FUTURE THERAPEUTIC APPROACHES
Four general approaches to therapy are being ex-

plored (Table 1): altering thresholds of immune ac-
tivation, modulating antigen-specific responses, re-
constituting the immune system with autologous or
allogeneic stem cells, and sparing of target organs.

Interference with costimulation, signaling, chemo-
kines, cytokines, and other molecules critical to im-
mune activation is designed to restore homeostasis
in the immune system and dampen the autoimmune
response. It is based on the concept that small chang-
es in the availability of proteins that control interac-
tions between cells or participate in intracellular sig-
naling can divert the immune system away from
autoreactivity.

Antigen-specific therapies aim to induce tolerance
to a particular antigen. Exposure of the immune sys-
tem to autoantigens or appropriate peptides delivered
either by ingestion to induce oral tolerance147 or by
injection148 has worked well in animals but not in hu-
mans.134,160 Perhaps this approach can only work dur-
ing the initial activation of autoreactive cells, because
once disease is clinically apparent, the immunologic
milieu may be inflammatory and epitope spreading
may have occurred. However, the rate of concord-
ance for autoimmune disease of less than 50 percent
in monozygotic twins argues against attempting pre-
ventive strategies. We may need to combine antigen-
specific therapies with cytokine or costimulatory

blockade to expose lymphocytes to the antigen in the
absence of inflammation. Alternatively, some autoim-
mune diseases may be sustained by memory cells that
resist the induction of tolerance.

An approach involving stem-cell transplantation
has engendered much excitement recently. Pilot stud-
ies of reconstitution with autologous and allogeneic
stem cells are proceeding in patients with systemic
lupus erythematosus, rheumatoid arthritis, scleroder-
ma, and multiple sclerosis.155,161-163 The hope is to re-
store homeostasis with regulatory cells. The efficacy
and safety of this approach are unknown.

The complex causes of autoimmune diseases not
only present a challenge to the development and test-
ing of new therapies but also offer a framework that
allows the identification of subgroups of patients who
might benefit from particular approaches. Although
we will encounter both successes and setbacks, con-
tinued studies of autoimmune diseases in humans
and animals are necessary to help identify the most
appropriate strategies for each disease.
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