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nfection with human immunodeficiency virus type 1 (hiv-1), the

 

retrovirus that causes the acquired immunodeficiency syndrome (AIDS), is one
of the leading causes of death worldwide. All currently available antiretroviral

agents inhibit essential HIV-1 enzymes — either the reverse transcriptase or the pro-
tease (Fig. 1). Recent advances have markedly improved the outcome for many pa-
tients who receive these classes of antiretroviral drugs. However, the success of cur-
rent therapy is limited by the emergence of drug-resistant viruses, the necessity of
sustained adherence to complex regimens, and the potential for toxic effects. Novel
classes of safe and effective agents with a low risk of cross-resistance with other an-
tiretroviral drugs are needed.

Targeting viral entry may have advantages over the inhibition of steps in the viral life
cycle after the cell has been infected. A better understanding of how HIV-1 binds to and
enters cells has prompted a reappraisal of previous attempts to block viral entry and an
evaluation of new approaches (Table 1). In this article, we outline the steps involved in
viral attachment and entry, provide an update on agents under development that have
been designed to inhibit each of these steps, and consider the prospects of these com-
pounds in the treatment of human immunodeficiency virus (HIV) infection.

 

early characterization of the viral envelope and cd4+ t-cell tropism

 

The initial characterization of HIV-1 centered on its tropism for mature human helper
T lymphocytes, which express the CD4 (or T4) surface protein (also expressed on mono-
cytes, dendritic cells, and brain microglia).

 

1-4

 

 Molecular studies demonstrated that, like
other retroviruses, the HIV-1 particle is surrounded by a lipid bilayer, derived from the
host cell and studded with viral glycoproteins (Fig. 2). The infectivity of HIV requires the
surface glycoprotein subunit (gp120) and the transmembrane glycoprotein subunit
(gp41) of gp160, a viral precursor protein. The two subunits are cleaved from gp160 by
host-cell proteases and then reassembled as oligomeric structures (trimers) on the viral
membrane (Fig. 3A).

 

5,6

 

The amino acid sequence of gp120 contains five variable regions (V1 through V5),
alternating with more conserved regions; the variable regions tend to be exposed on the
viral surface.

 

7,8

 

 Noncontiguous regions of the gp120 molecule come together to form
the CD4 binding site, and small deletions or substitutions in either CD4 or conserved
regions of gp120 disrupt the binding of the virus.

 

9-11

 

The design of inhibitors of viral entry must take into account the three-dimensional
structure and the variability in the sequence of the intact wild-type HIV-1 envelope, rather
than the linear sequences of denatured proteins or the envelopes of laboratory-adapted
strains of HIV-1, which do not reliably predict the in vivo activity of investigational
agents that block viral entry.

i

hiv-1 binding and entry
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the search for entry cofactors

 

Because CD4 alone is insufficient to permit the entry
of HIV-1, it has long been suspected that additional
receptors or other factors are required. Although
most HIV-1 isolates successfully infect primary
helper T cells, individual viral isolates have a range
of tropisms (for example, in vitro, some preferen-
tially infect macrophages over T-cell lines) and cause
varying degrees of cell fusion (formation of syncytia
or multinucleated giant cells) in T-cell lines. Amino
acid residues within conserved V3-loop sites of
gp120 were known to affect membrane fusion,

 

12,13

 

but the basis of the differences in tropism was until
recently poorly understood. Important clues to the
“coreceptor” mystery arose from the discovery that

 

b

 

-chemokines (macrophage inflammatory pro-
teins 1

 

a

 

 and 1

 

b

 

 [MIP-1

 

a

 

 and MIP-1

 

b

 

], as well as
RANTES [regulated upon activation normal T-cell
expressed and secreted]), which are chemotactic cy-
tokines produced by macrophages, activated T cells,
and natural killer cells, suppress the replication of
some strains of HIV-1.

 

14

 

chemokine coreceptors (cc chemokine 
receptor 5 and cxc chemokine receptor 4)

 

After the seminal discovery by Feng and colleagues
that a G-protein–coupled chemokine receptor, CXC
chemokine receptor 4 (CXCR4), was the key to cellu-
lar entry for viruses that grow well in cultured T-cell
lines (X4 viruses),

 

15

 

 several groups of researchers
rapidly confirmed that chemokine receptors were
the missing link in our understanding of HIV-1 en-
try (Fig. 2). The expression of CXCR4 made other-
wise impenetrable CD4+ cell lines susceptible to
productive HIV-1 infection. CC chemokine recep-
tor 5 (CCR5), a 

 

b

 

-chemokine receptor with a seven-
transmembrane-protein structure similar to that of
CXCR4, was found to serve as a coreceptor for non–
syncytium-inducing or macrophage-tropic HIV-1
(R5 viruses).

 

16,17

 

 Chemokine receptors are the pri-
mary binding sites for many related retroviruses,
and HIV-1 can be genetically modified to allow CD4-
independent cell entry,

 

18

 

 suggesting that CXCR4
and CCR5 are the primordial receptors, rather than
just cofactors.

 

19

 

HIV-1 isolates of the R5 type have been implicat-
ed in most cases of sexually transmitted HIV infec-
tion, whereas X4 viruses, which replicate best in
T-cell lines, often predominate in the later stages of
HIV disease and may be associated with rapid pro-
gression to AIDS and death.

 

20,21

 

 Clinical isolates
may contain mixtures of R5 and X4 viruses, and

some individual viral strains (R5X4, or dual-trop-
ic viruses) can use either the CXCR4 (X4-virus) or
CCR5 (R5-virus) receptor.

 

22

 

 As previous experi-
ments have suggested, V3-loop amino acid sequenc-
es in gp120 are major determinants of chemokine-
receptor affinity.

 

23,24

 

 Although other chemokine
receptors (CC chemokine receptors 2, 3, and 8,
BOB, and others) can facilitate the entry of specific
HIV-1 variants in vitro, all clinical isolates of HIV-1
use CCR5, CXCR4, or both for entry.

 

25

 

Naturally occurring host defects in CCR5 expres-
sion have demonstrated the clinical significance
of these receptors. A homozygous deletion that
prevents CCR5 expression occurs disproportion-
ately among persons who are frequently exposed to

 

Figure 1. The Life Cycle of Human Immunodeficiency Virus Type 1 (HIV-1), 
Showing Potential Targets for Antiretroviral Therapy.

 

HIV-1 binds to receptors on the cell surface, undergoes membrane fusion, 
and then releases copies of the RNA genome into the cytoplasm. After suc-
cessful invasion of the cell, the viral reverse-transcriptase enzyme transcribes 
single-stranded viral RNA into double-stranded DNA that can be integrated 
into the genetic material of the human host. Reverse-transcriptase inhibitors 
were the first agents approved for the treatment of HIV-1; currently available 
inhibitors of this enzyme are nucleoside antagonists (zidovudine, didano-
sine, zalcitabine, lamivudine, stavudine, abacavir, and combined formula-
tions), nonnucleoside competitive inhibitors (nevirapine, delavirdine, and 
efavirenz), and one nucleotide analogue (tenofovir). The viral integrase en-
zyme is required for the integration of proviral DNA into the host genome 
before replication. Investigational integrase inhibitors are currently in early 
clinical trials. When the infected cell synthesizes new protein, integrated 
proviral DNA is also translated into the protein building blocks of new viral 
progeny. The viral components then assemble on the cell surface and bud out 
as immature viral particles. The final maturation of newly formed viruses 
requires the HIV-1 protease to digest larger components into the intricate 
pieces that make up an infectious virion. Several protease inhibitors (ritona-
vir, indinavir, nelfinavir, amprenavir, lopinavir–ritonavir, and two formulations 
of saquinavir) are currently in clinical use.
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HIV-1 but who nonetheless remain uninfected.

 

26

 

Heterozygous or partial mutation of a gene respon-
sible for CCR5 expression on the cell surface does
not block infection but does provide some protec-
tion from disease progression.

 

27

 

 Rare cases of in-
fection in persons with a homozygous deletion of
the gene responsible for CCR5 expression appear
to be caused by X4 viruses.

 

28

 

membrane fusion

 

The final step in viral entry, the fusion of the viral
envelope with the cell membrane, is mediated by
gp41. The molecular sequence of gp41 includes

“heptad-repeat” regions (HR1 and HR2), reflecting
the presence of periodic hydrophobic regions found
in 

 

a

 

-helical “coiled-coil” structures.

 

29,30

 

 Mutations
in the HR regions interfere with the fusion property
of gp41.

 

31

 

A model of gp41-mediated membrane fusion
analogous to the “spring-loaded” mechanism of in-
fluenzavirus has been proposed. After influenzavi-
rus attaches to a target cell and enters the acid-rich
endosome, the conformation of the hemagglutinin
protein changes, shifting a “fusion peptide” into fa-
vorable position for the mediation of fusion.

 

32

 

 The
model predicts that the gp120–gp41 trimer holds

 

* RANTES denotes regulated upon activation normal T-cell expressed and secreted, CCR5 CC chemokine receptor 5, gp glycoprotein, and 

 

CXCR4 CXC chemokine receptor 4, and FDA Food and Drug Administration.

 

Table 1. Examples of Inhibitors of HIV-1 Cell Entry in Development.*

Type of Inhibitor Proposed Mechanism of Action Developmental Status

CD4-receptor inhibitors

 

Recombinant soluble CD4 Competitively binds with gp120 receptor Limited activity in phase 1–2 trials

TNX-355 Monoclonal antibody against CD4, provides steric 
hindrance for chemokine receptor binding

Phase 1–2 (showing dose-related activity after a 
single intravenous dose)

PRO 542 Tetrameric CD4 incorporated into gamma globulin Phase 1–2 (preliminary evidence of activity after 
injections)

BMS-806 Binds to gp120 to block CD4 binding Preclinical

 

Chemokine-receptor inhibitors

 

SCH-C RANTES antagonist, competitively binds to CCR5 Phase 1–2 (showing short-term activity as oral 
agent)

PRO 140 Monoclonal antibody against CCR5 Preclinical

AMD3100 Bicyclam inhibitor of CXCR4 Minimal activity in most patients in phase 2 study 
of intravenous administration

 

Other attachment inhibitors

 

Dextran sulfate Possible charge-mediated attachment interference, 
binds gp120 and inhibits CXCR4 interaction

Phase 1–2 (showing mixed activity, excessive 
toxicity)

PRO 2000 Binds to CD4 and interferes with gp120 binding Phase 2 in progress, as topical microbicide

Cyanovirin-N Binds to gp120, interferes with CD4 and CXCR4 
interactions

Preclinical, as topical microbicide

 

Membrane-fusion inhibitors

 

Enfuvirtide (T-20) Peptide that interferes with gp41-mediated fusion Phase 3 (showing activity beyond 1 yr from subcuta-
neous injections, advantage at 6 mo as part of 
salvage regimen); FDA approved for clinical use

T-1249 Peptide that interferes with gp41-mediated fusion Phase 1–2 (showing short-term activity from subcu-
taneous injections, proof of concept to support 
use as salvage treatment for patients with enfu-
virtide-resistant virus)

“Five-helix” Binds to C terminal of gp41 to form stable six-helix 
structure, inhibits fusion

Preclinical
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each gp41 in a high-energy configuration, with the
fusion peptide pointed inward, toward the viral sur-
face (Fig. 3A). The binding of gp120 to CD4 and
chemokine receptors is thought to release gp41
from this configuration, causing the fusion peptide
to spring outward toward the cell membrane (Fig.
3B). Still in their trimeric association, the HR1 re-
gions then fold over into the hydrophobic groove
formed by the three corresponding HR2 regions,
forming a stable six-helix bundle, thus bringing vi-
ral and cell membranes into proximity for fusion
and entry (Fig. 3C).

 

33

 

crystallizing the dynamic roles
of the viral envelope proteins

 

Partial x-ray crystallization of the HIV-1 glycopro-
teins, in complex with receptors, sheds light on the

three-dimensional interactions between viral and
host components during binding and entry.

 

19

 

 This
imaging of the complexes has confirmed the se-
quential conformational changes that follow the
binding of the virus to CD4 and chemokine recep-
tors and has suggested the occurrence of several in-
terdependent steps in the process of viral entry.

 

inhibiting the interaction of gp120 
with the cd4 molecule

 

Initial attempts to block HIV entry focused on the
interaction between gp120 and CD4. Recombinant
soluble CD4 (rsCD4), which was developed as a vi-
ral-attachment decoy, demonstrated potent inhibi-
tion of HIV-1 infection in vitro.

 

34,35

 

 In the clinical

inhibition of viral entry

 

Figure 2. HIV-1–Binding Events and Potential Sites of Action for Various Viral-Entry Inhibitors.

 

HIV-1 is covered by a lipid bilayer derived from host-cell membranes. Incorporated into this bilayer are viral glycopro-
teins as well as host adhesion molecules that may play a part in attachment to target cells. The viral-entry process con-
sists of a series of coordinated interactions — binding to two different receptors (Panel A) and membrane fusion (Panel B). 
The viral envelope glycoproteins are synthesized as a single polyprotein that assembles into a trimer and then is broken 
down by host protease into surface glycoprotein subunits (gp120) and transmembrane glycoprotein subunits (gp41). 
Each gp120 monomer is a complex, folded structure, consisting of a series of variable loops formed by disulfide bonds, 
with noncontiguous segments brought together to form three-dimensional binding sites for the CD4 receptor and a che-
mokine receptor (either CCR5 or CXCR4). Initial binding of gp120 to CD4 (Panel A) might be blocked by soluble CD4 de-
coys, monoclonal antibodies against sequences on gp120 or CD4, or other small-molecular inhibitors. After CD4 binding, 
each gp120 undergoes a conformational change exposing the region that will bind to a seven-transmembrane chemo-
kine receptor. Viral isolates have varying affinities for CCR5 or CXCR4 receptors. Binding of the chemokine coreceptors 
might be inhibited by natural ligands of these receptors or their derivatives, small-molecule inhibitors, monoclonal anti-
bodies directed at the interacting sites, or down-regulation of receptor expression. It is hypothesized that binding of both 
the CD4 and chemokine receptors shifts away the steric hindrance of the heavily glycosylated gp120, allowing the gp41 
segment to mediate membrane fusion and entry (Panel B).
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setting, however, rsCD4 had negligible activity ex-
cept at very high doses.

 

36-39

 

 A chimeric molecule
consisting of recombinant CD4 and gamma globu-
lin had an extended half-life yet had little or no ac-
tivity when administered with zidovudine.

 

40

 

 Despite
these failures, new inhibitors of interactions be-
tween gp120 and CD4 continue to be pursued.

PRO 542, a hybrid tetramer, contains CD4 recep-
tor domains within an IgG2 backbone and acts as a
decoy for gp120 binding. It is active in vitro against
diverse strains of HIV-1, including clinical iso-

lates.

 

41

 

 PRO 542 must be administered parenterally
but has a half-life in plasma of more than three days.
In pilot studies, the compound was well tolerated
and there was evidence of antiviral activity in adults

 

42

 

and children.

 

43

 

Monoclonal anti-CD4 antibodies can also block
the interaction between gp120 and CD4; some of
these monoclonal antibodies can inhibit the repli-
cation of multiple subtypes of HIV-1 in vitro.

 

44

 

 Al-
though anti-CD4 antibodies may have immunosup-
pressive effects,

 

45,46

 

 a recent report on a humanized

 

Figure 3. Proposed Model of the gp41-Mediated Membrane-Fusion Step, Showing Sites of Action for Fusion Inhibitors in Development.

 

Panel A shows the gp120–gp41 trimer before it binds to a cell. It is thought that after gp120 binds to CD4 and chemokine receptors, gp120 
changes conformation (Panel B), probably breaking away entirely, which allows gp41 to spring out of its high-energy configuration. This re-
lease of potential energy propels the fusion-peptide portion of gp41, which was previously pulled in close to the viral surface, outward to snag 
the target cell membrane. Within this extended configuration of gp41, intertwined heptad-repeat (HR2) regions form hydrophobic grooves 
that fold over and bind to corresponding HR1 coiled coils, collapsing gp41 into a stable six-helix or “trimer of hairpins” configuration (Panel C). 
This hinge action of gp41 brings the viral and cell lipid membranes into close proximity for viral entry.

Panel D shows the gp41 amino acid sequence (shown as a linear sequence, above, and with the relation between the HR1 and HR2 regions 
when gp41 is folded over into a hairpin configuration at a point where two cysteine residues [CC] form a disulfide-bonded loop, below). As 
shown at the bottom of the figure, T-20 and T-1249 are peptides derived from HR2 segments. These peptides may act as competitive decoys 
for the process through which the extended coiled-coil structure of HR1 folds back to bind to corresponding regions of HR2 (with the T-1249 
binding region extending farther along into the “deep-pocket” sequence of HR1), thus disrupting the formation of the six-helix configuration 
required for membrane fusion. Similar approaches have been proposed, involving smaller peptides or a “five-helix” agent (essentially the 
converse of the enfuvirtide strategy) that bind HR2 segments, preventing viral entry through related mechanisms. FP denotes fusion peptide, 
and tm membrane-spanning region.
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anti-CD4 antibody called TNX-355 demonstrated
no serious adverse events in the short term and
no CD4-cell depletion. This dose-escalation trial
showed clinically significant reductions in the viral
load (of >1.0 log

 

10

 

 copies of HIV-1 RNA per millili-
ter) two to three weeks after a single intravenous
dose of 10 to 25 mg per kilogram of body weight.

 

47

 

Certain small molecules may competitively and
reversibly inhibit viral entry by binding gp120 and
blocking the gp120–CD4 interaction.

 

48

 

 A lead com-
pound of this type (BMS-806) demonstrated potent
HIV-1 inhibition in vitro, but activity varied among
different subtypes (clades) of HIV-1 and even with-
in the same clade. Mutations in the region of gp120
that binds to CD4 cause resistance to BMS-806, sup-
porting the proposed mechanism of action.

 

49

 

nonspecific interference 
with attachment

 

Dextran sulfate and other polyanions can inhibit the
replication of HIV-1 in vitro.

 

50

 

 Originally attributed
to nonspecific, charge-mediated interference with
gp120–CD4 interactions, the effect of dextran sul-
fate has been linked more recently to its ability to
attach to the V3 loop of X4 or R5X4 viruses, thus
blocking the binding of gp120 to coreceptors.

 

51,52

 

Dextran sulfate inhibits the replication of X4 isolates
but may enhance R5 infections in vitro.

 

53

 

 Clinically,
intravenous dextran sulfate was toxic and in some
cases appeared to increase viral replication.

 

54

 

PRO 2000 is a naphthalene polyanion that binds
to CD4 but not to gp120

 

55

 

; it is currently in clinical
trials as a topical microbicide.

 

56

 

 Cyanovirin-N, an-
other topical compound with an active ingredient
derived from blue-green algae, may interfere with
several receptor-binding functions of gp120 simul-
taneously.

 

57

 

blocking chemokine-receptor binding

 

Several agents that bind the CCR5 and CXCR4 re-
ceptors and block HIV-1 replication in vitro are in
development.

 

14,58-61

 

 CCR5 may be a desirable tar-
get, because persons without CCR5 expression on
the surface of cells are relatively resistant to HIV-1
infection and have no obvious immunologic defi-
ciencies. However, the role of CCR5 in inflamma-
tory and immune responses is not fully understood
and may vary in different clinical settings. Because
X4 variants are linked with a rapid decline in the
number of CD4 cells,

 

20,21

 

 it is also potentially a con-
cern that CCR5 inhibitors may exert a selection pres-
sure favoring CXCR4-tropic viruses.

The natural ligands for CCR5 — the 

 

b

 

-chemo-
kines MIP 1-

 

a

 

, MIP 1-

 

b

 

, and RANTES — inhibit
HIV-1 replication in vitro. A series of small-molecule

 

b

 

-chemokine antagonists and monoclonal antibod-
ies have potent in vitro activity (a 50 percent inhibi-
tory concentration [IC

 

50

 

] of less than 10 nM) against
R5 variants, have no activity against X4 viruses,
and act synergistically with approved antiretroviral
drugs.

 

62-65

 

 Several compounds are now in clinical
development. In a short-term pilot study, one such
compound, SCH-C, reduced the mean plasma vi-
ral load by a factor of about three, although the ef-
fect varied from subject to subject.

 

66

 

 Selection of
SCH-C–resistant HIV-1 in vitro has been observed
without a switch from CCR5 to CXCR4 coreceptor
usage.

 

67

 

Because CXCR4 occurs on a wider range of types
of cells than CCR5, there is concern about potential
adverse effects of blocking this receptor. Indeed,
CXCR4-knockout mice have fatal congenital defects
(including abnormal B-cell development and mul-
tiple malformations).

 

68

 

 Several CXCR4 antagonists
(cationic bicyclams) with in vitro activity have been
developed,

 

69-71

 

 but it has been difficult to adminis-
ter them, and their in vivo activity has been limited.
One pilot study of a CXCR4 antagonist involving 40
HIV-infected subjects demonstrated selective pres-
sure against X4 variants, but a response in the plas-
ma viral load was observed in only one subject.

 

72

 

Amino acid changes in gp120 (some in and around
the V3 loop) that confer resistance to CXCR4 an-
tagonists have been described.

 

73

 

 The 

 

a

 

-defensins,
recently described endogenous HIV-1–inhibitory
factors, are small cationic proteins that act predom-
inantly against X4 variants

 

74

 

; at least part of this an-
tiviral activity may be related to blocking the entry of
the virus.

 

blocking the fusion of virus
with the cell membrane

 

Synthetic peptides that mimic HR2 segments of
gp41 and probably block fusion by binding compet-
itively to the hydrophobic groove formed by inter-
twined HR1 regions when gp41 is in its extended
conformation (Fig. 3) have significant antiretroviral
effects in vitro.

 

29-31

 

 Two peptides, T-20 and T-1249,
are currently being studied in clinical trials. Several
groups of investigators have demonstrated that
other compounds in preclinical development —
smaller peptides as well as a “five-helix” protein

 

75-77

 

— inhibit the replication of HIV-1 by related mech-
anisms.
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t-20 (enfuvirtide)

 

Enfuvirtide (T-20), a 36-amino-acid peptide derived
from the HR2 sequence of a laboratory strain of
HIV-1, has broad activity against X4, R5, and dual-
tropic variants of HIV-1

 

78

 

 and is furthest along in
clinical development. Oral treatment with this large
peptide is not feasible. The initial clinical study of
intravenous enfuvirtide monotherapy demonstrated
potent antiretroviral effects without clinically sig-
nificant short-term toxic effects.

 

79

 

 Further studies
were undertaken to evaluate the use of enfuvirtide
by subcutaneous injection. In a 28-day phase 2 study
involving 78 HIV-infected adults in whom conven-
tional regimens had failed, enfuvirtide was delivered
by continuous subcutaneous infusion with the use
of an insulin pump or by twice-daily subcutaneous
injection.

 

80

 

 Dose-related decreases in the viral load
were observed with both methods of administra-
tion, but continuous subcutaneous infusion was
hampered by technical difficulties. The largest re-
ductions in viral load (mean reduction, 1.6 log

 

10

 

copies of HIV-1 RNA per milliliter) were observed
in the group that received twice-daily injections of
100 mg of enfuvirtide. Viral-load rebound during
therapy was noted in some subjects, and drug re-
sistance was demonstrated in viruses from some of
these subjects.

 

81

 

Longer-term activity and tolerability appeared
favorable in 70 subjects who had previously been in-
volved in short-term clinical trials, who were then
offered further open-label therapy with enfuvirtide
(50 mg twice daily by subcutaneous injection).

 

82

 

 A
randomized, open-label trial involving patients who
had received protease inhibitors but had not had a
clinical response to them suggested that switching
to a salvage regimen containing a nonnucleoside
reverse-transcriptase inhibitor plus enfuvirtide was
more effective than the same salvage regimen with-
out enfuvirtide.

 

83

 

 These results were similar to, or
better than, those of other trials involving salvage
regimens for subjects who had been treated with
multiple antiretroviral regimens, but the limited size
of these studies and their designs preclude definitive
conclusions.

The results of two parallel phase 3 studies of
enfuvirtide in patients with extensive previous
treatment, one (T-20 vs. Optimized Regimen Only
Study 1 [TORO 1])

 

84

 

 involving 491 subjects in North
America and South America and the other (T-20 vs.
Optimized Regimen Only Study 2 [TORO 2])

 

85

 

 in-
volving 504 subjects in Europe and Australia, are
published in this issue of the 

 

Journal

 

. All participants

underwent genotypic and phenotypic resistance
testing to assist with the individualized selection of
the best available antiretroviral regimen (the opti-
mized background regimen), which consisted of
three to five drugs, and then were randomly as-
signed in a 2:1 ratio to receive the optimized back-
ground regimen plus subcutaneous enfuvirtide or
the optimized background regimen alone. At week
24, the mean reductions in viral load in these pa-
tients with relatively advanced and treatment-resist-
ant disease were significantly greater among enfu-
virtide recipients than among controls.

The most common adverse events in all studies
of subcutaneous enfuvirtide have been injection-site
reactions, which are typically mild but occur in the
majority of patients. These reactions usually result
in pruritic subcutaneous nodules, although larger
painful inflammatory masses are occasionally ob-
served. In the phase 3 trials,

 

84,85

 

 self-administration
of enfuvirtide was generally successful; approxi-
mately 3 percent of the patients discontinued treat-
ment because of local reactions. A complex process
of synthesis is required to produce enfuvirtide, but
methods are being streamlined, and the drug has
recently received approval from the Food and Drug
Administration.

 

t-1249

 

The second peptide inhibitor of fusion that is now
in development, T-1249, binds to a region partially
overlapping with the region to which enfuvirtide
binds but extending into a “deep-pocket” region of
HR1 that is important for the formation of the six-
helix structure required for fusion.

 

86

 

 T-1249 has
been studied in a 14-day phase 1–2 trial involving
115 HIV-1–infected subjects. Subjects received
T-1249 alone at a total daily dose ranging from
6.25 to 200 mg, with some groups receiving once-
daily injections and others twice-daily injections.

 

87

 

The largest median declines in plasma HIV-1 RNA
levels (2.0 log

 

10

 

 copies per milliliter) were observed
in subjects receiving 150 to 200 mg once daily. Three
serious adverse events thought to be related to
T-1249 were observed.

 

resistance to enfuvirtide and t-1249

 

Analyses of HIV-1 from patients in the middle-dose
groups of the original phase 1 trial of enfuvirtide
demonstrated a rapid evolution of changes in the
HR1 coding region, which correlated with resist-
ance to the drug.

 

88

 

 The mutations cluster around a
specific gp41 region,

 

89,90

 

 supporting the putative
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mechanism of action of enfuvirtide. Two amino acid
changes in this region may lead to decreases by a
factor of 100 in susceptibility. Most variants that are
resistant to enfuvirtide maintain susceptibility to
T-1249 in vitro.

 

81

 

 Viruses containing mutations that
confer resistance to enfuvirtide may have disadvan-
tages of replication capacity (decreased “viral fit-
ness”) in the absence of selection pressure from the
drug, as compared with wild-type virus.

 

91

 

 Recent-
ly, antiviral activity of T-1249 was demonstrated in
subjects with prolonged previous exposure to en-
fuvirtide and documented enfuvirtide-resistant
virus.

 

92

 

A new, diverse class of compounds designed or se-
lected to inhibit the entry of HIV-1 into host cells is
approaching clinical application. Early clinical ex-
perience with some of these compounds has been
favorable, and toxic effects or drug-resistance pat-
terns that overlap with those of currently available
therapies have not been observed. Randomized
clinical trials have recently demonstrated a benefit
when a fusion inhibitor, enfuvirtide, is given as part
of a salvage regimen for patients with drug-resist-
ant HIV-1 who currently have limited therapeutic
options.

As with all available antiretroviral agents, the
clinical activity of viral-entry inhibitors will be limit-
ed by selection for drug-resistant viral variants un-
less the compounds can be used together with other
effective drugs. Because dual-tropic virus or mixed
populations of viruses may be present within the

same host, CCR5 and CXCR4 inhibitors may have a
greater likelihood of clinical effectiveness if they can
be safely administered in combination. The avail-
ability of chemokine receptors modulates the sus-
ceptibility to membrane-fusion inhibitors in some
in vitro assays

 

90,93,94

 

; however, there is no evidence
thus far that this observation will have clinically sig-
nificant implications.

 

95

 

 Several groups have demon-
strated potent synergism between viral-entry inhib-
itors when various combinations of agents directed
at the gp120–CD4 interaction (PRO 542), chemo-
kine-receptor antagonists, and peptide-fusion in-
hibitors are evaluated in vitro.

 

96-98

Observations regarding the range of suscepti-
bility of different viral strains under different assay
conditions and regarding the different degrees of
synergism between agents that block viral entry may
have similar pathogenetic explanations: factors that
impede the initial steps toward entry, especially in-
teractions with CCR5 or CXCR4, may increase the
window of opportunity for peptide inhibitors such
as enfuvirtide to interfere with gp41-mediated fu-
sion.94 These findings suggest that there may be
good prospects for potent combinations of entry
inhibitors, just as HIV-1 protease inhibitors or re-
verse-transcriptase inhibitors are administered to-
gether today.
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