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YMPHOCYTES are equipped to eradicate
noxious agents (microbes, cancer cells, and
grafts) that disturb the body’s equilibrium,

but when their cellular activity is excessive, the re-
sults are harmful. The list of abnormalities known to
be caused by excessive lymphocyte activity is exten-
sive. We review two distinct pathways that account
for most of the cellular injury induced by lympho-
cytes, with an emphasis on their clinical implications.

 

THE MOLECULAR BASIS OF LYMPHOCYTE-

MEDIATED CYTOLYSIS

 

Unlike humoral immune responses, which are me-
diated through antibodies and complement and can
be transferred in serum to unimmunized subjects,
cellular immune responses require the direct partici-
pation of effector cells such as T lymphocytes. The
functional activities of both helper T lymphocytes
(predominantly CD4 cells) and cytotoxic T lympho-
cytes (predominantly CD8 cells) are initiated by the
binding of specific antigen presented in association
with the major histocompatibility complex (MHC)
on the target cell to T-cell–antigen receptors (Fig. 1).
Therefore, the actions of T lymphocytes are consid-
ered antigen-specific and MHC-restricted. On activa-
tion by target cells, helper T lymphocytes secrete cy-
tokines that promote the recruitment and activation
of other cells, such as macrophages, to execute their
effector functions. In contrast, activation of cytotoxic
T lymphocytes results in direct killing of the target
cell. Another class of lymphocytes, known as natural
killer cells, do not express classic markers for T or

L

 

B lymphocytes and yet are capable of lysing a variety
of target cells without antigenic stimulation. Unlike
cytotoxic T lymphocytes, natural killer cells recognize
their target cells in a non–MHC-restricted manner.

Lymphocyte-mediated cell killing involves a se-
quence of biologic events beginning with binding of
the antigen-presenting (target) cell to the killer lym-
phocyte, by means of the recognition process de-
scribed above. After the cell–cell interaction, the killer
lymphocyte kills the target cell through the action of
soluble cytolytic mediators (perforin and granzymes)
stored in the cytoplasmic granules in the T cell (Fig.
2A) and a killer-lymphocyte surface molecule (Fas lig-
and)

 

1-3

 

 (Fig. 2B). After this cytolytic attack, target
cells may die by necrosis (characterized by membrane
disruption and organelle destruction) or apoptosis
(characterized by chromatin condensation, DNA
fragmentation, and membrane blebbing).

 

4

 

Perforin–Granzyme-Dependent Cell Killing

 

Killer lymphocytes have many lysosome-like cyto-
plasmic granules that contain electron-dense cores
surrounded by vesicular material. When the cells are
activated, these granules move toward the plasma
membrane of the cell, fuse with it, and then dis-
charge their contents toward the target cell.

 

5,6

 

Perforin (also known as cytolysin), so named be-
cause it can form pores that perforate the plasma
membrane of target cells,

 

7,8

 

 is a prominent compo-
nent of the granules. It is a 70-kd glycoprotein that
is produced exclusively by activated killer lympho-
cytes.

 

9,10

 

 The pores are formed by calcium-induced
aggregation of perforin molecules that have entered
the membrane

 

7,8

 

 (Fig. 3A). Through these pores,
which range from 5 to 20 nm in internal diameter
and function as high-conductance, nonselective ion
channels, water and low-molecular-weight solutes
may freely enter the target cells, resulting in their
death by “colloid–osmotic lysis” — that is, the cells
literally burst (Fig. 3B). This mechanism of action of
perforin is reminiscent of that mediated by the
membrane-attack complex of complement.

 

11

 

 In vi-
tro, purified perforin can efficiently lyse a wide vari-
ety of nucleated and nonnucleated cells,

 

7,8

 

 and trans-
fection studies indicate that the expression of perforin
in non-killer cells confers the ability to kill.

 

12

 

 These
results, taken together, suggest a paramount role for
perforin in the cell killing mediated by killer lym-
phocytes.

The lymphocyte granules also contain several dis-
tinct but related proteases collectively called gran-
zymes. To date, seven mouse and three human
granzymes have been identified.

 

13

 

 Among them,
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granzyme A (a protease with trypsin-like activity)
and granzyme B (a unique protease that is specific
for aspartic acid residues) have been extensively char-
acterized. Although granzymes themselves are non-
cytolytic, they may participate indirectly in the cell-
killing process. Inhibition of the enzymatic activity
or the cellular expression of granzymes reduces the
killing activity of T lymphocytes.

 

14,15

 

 The expression
of granzyme A or B together with perforin in non-
killer cells renders these cells functionally cytolytic
and capable of inducing apoptosis of nucleated target
cells.

 

16

 

 Purified granzyme A or B, in the presence of
perforin, induces apoptosis in target cells.

 

17,18

 

 Collec-
tively, these results suggest that granzymes, released
along with perforin, exert their cytolytic (i.e., apop-
tosis-inducing) effects only after entering the target
cells. Perforin may assist granzymes in entering target
cells in two ways: perforin pores may serve as con-
duits for the granzymes, and the formation of per-
forin pores in the target-cell membrane may trigger
an endocytic-repairing action that allows granzymes
to enter the cells.

The cooperative action of perforin and granzymes
provides a reasonable explanation for several con-
flicting observations. For example, perforin alone
causes only necrotic death of target cells,

 

19

 

 whereas

T lymphocytes can kill target cells by inducing both
necrosis and apoptosis.

 

20

 

 This discrepancy is recon-
ciled by the evidence that granzymes (particularly
granzymes A and B) are involved in inducing apop-
tosis in target cells.

 

17,18 

 

By virtue of such cooperative
action, perforin and granzymes together are fully
competent in mimicking the cytolytic effect of killer
lymphocytes. The putative involvement of both per-
forin and granzyme B in lymphocyte-mediated cy-
tolysis has received strong support from studies of
mice with deletions of the perforin gene. The cy-
tolytic activity of killer lymphocytes of these mice is
markedly depressed.

 

21-24

 

 The killer lymphocytes of
granzyme B–knockout mice, while able to kill target
cells in vitro, do not cause rapid DNA fragmentation
in the cells.

 

25

 

 These results indicate that the cytolytic
actions of T lymphocytes result from the coordinat-
ed action of perforin and granzymes. Granzymes
may trigger apoptosis of target cells by prematurely
activating kinase Cdc2, which is regulated during
the cell-division cycle (cdc),

 

26

 

 or by activating a cy-
toplasmic protease named CPP32 (a protease related
to interleukin-1

 

b

 

–converting enzyme).

 

27

 

 

 

Fas-Dependent Cell Killing

 

Monoclonal antibodies that recognize proteins
designated Fas and APO-1 on the surface of various
target cells can trigger the apoptotic death of these
cells by binding to the respective proteins.

 

28,29

 

 Fas
and APO-1 appear to be a single 43-kd protein that
belongs to the superfamily of tumor-necrosis-factor
and nerve-growth-factor receptors.

 

28-30

 

 The identifi-
cation of Fas–APO-1 as a receptor-like molecule
raised the question of its involvement in lympho-
cyte-mediated cytolysis and prompted the search for
its ligands. Subsequently, the Fas ligand was isolated
and cloned; the sequence proved to have some ho-
mology to tumor necrosis factor 

 

a

 

.

 

31

 

 The binding of
Fas ligand to Fas can trigger the apoptotic death of
Fas-expressing cells through intracellular signaling
pathways that are as yet unclear (Fig. 2B).

The involvement of the Fas-dependent pathway in
lymphocyte-mediated cytolysis has been further sub-
stantiated by studies using perforin-knockout mice.
Killer lymphocytes derived from these mice retain
residual cytolytic activity that is mediated through
the Fas-dependent pathway.

 

22,23,32,33

 

 This pathway
accounts for approximately one third of the total cy-
tolytic activity of CD8 cytotoxic T lymphocytes.

 

2,33

 

It also contributes to the cell killing mediated by
CD4 cytotoxic T lymphocytes, natural killer cells,
and lymphokine-activated killer cells

 

34,35

 

 and has a
role in the so-called activation-induced cell death of
T lymphocytes

 

36

 

 and in the peripheral deletion of
autoreactive T lymphocytes.

 

37

 

 
Ineffective removal of these cells resulting from

defects in either Fas ligand or Fas, as exemplified by
the 

 

lpr

 

 (lymphoproliferation) phenotype (a 

 

Fas 

 

gene

 

Figure 1.

 

 MHC-Restricted Interaction between T Lymphocytes
and Target Cells.
The interaction begins with the binding of antigen in conjunc-
tion with an MHC molecule (class I for CD8 T cells and class II
for CD4 T cells) on the target cell by the T-cell–antigen receptor
(TCR). Accessory molecules, such as lymphocyte function anti-
gens (LFA) 1 and 3, intercellular adhesion molecule 1 (ICAM-1),
CD2, CD28, and B7 (T-cell costimulatory factor), are involved in
this interaction through their enhancement of cell–cell adhe-
sion or transduction of additional cell-activation signals.
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mutation) and the 

 

gld

 

 (generalized lymphoprolifera-
tive disease) phenotype (a Fas-ligand gene mutation)
in mice and the Canale–Smith syndrome (a 

 

Fas

 

 gene
mutation) in humans,

 

38

 

 may lead to lymphoprolifer-
ation, lymphadenopathy, and autoimmunity. The
Fas-dependent pathway may be the chief mechanism
by which CD4 cytotoxic T lymphocytes destroy an-
tigen-presenting cells or CD8 cytotoxic T lympho-
cytes, thereby turning off immune responses.

 

39,40

 

 
On the basis of these findings, it has been pro-

posed that the Fas-dependent pathway may have pri-
marily an immunoregulatory role and, to a lesser
extent, an immune effector role.

 

41

 

 Recently, Fas-
mediated apoptotic death of target cells was found

to involve proteases related to interleukin-1

 

b

 

–con-
verting enzyme.

 

42

 

 The participation of these pro-
teases in both killing dependent on perforin and
granzymes and Fas-dependent killing implies that
the two seemingly disparate pathways have a final
common mechanism of action.

 

THE INVOLVEMENT OF KILLER 

LYMPHOCYTES IN IMMUNE PROTECTION 

AND IMMUNOPATHOGENESIS

 

Lymphocyte-mediated cytolysis is important in
combating invading pathogens and destroying cells
bearing foreign characteristics (e.g., transplanted
cells), tumor antigens, or autoantigens. A better un-

 

Figure 2.

 

 Mechanisms of Lymphocyte-Mediated Cytolysis.
Panel A shows a mechanism dependent on perforin and granzymes. After binding of the target cell to the killer T cell (shown in
Fig. 1), cytoplasmic granules in the killer cell are rapidly reoriented toward the target cell in preparation for releasing the contents
of the granules, including perforin and granzymes, into the intercellular space. Perforin and granzymes attack the target cell by
forming pores in its plasma membrane and entering the cell. The killer cell may detach to attack other targets while the target cell
continues to die. Panel B shows a Fas-dependent mechanism. After the target cell binds to the killer cell, the level of expression of
Fas ligand on the killer cell rapidly increases. The interaction between Fas ligand and Fas receptor on the target cell leads to apop-
tosis. Proteases, such as CPP32 and other proteases related to interleukin-1

 

b

 

–converting enzyme (ICE), have been implicated in the
transduction of signals for apoptosis.
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derstanding of the actual role of killer lymphocytes
in different clinical situations could lead to new
therapeutic approaches for more efficiently purging
tumor or virus-infected cells or attenuating auto-
immune reactions and allograft rejection. In the
following sections, we discuss in general the role of
killer lymphocytes within the context of some well-
known diseases.

 

Viral Infections

 

Lysis of target cells mediated by killer lymphocytes
has been implicated in the clearance of virus and oth-
er intracellular organisms. Natural killer cells are in-
volved in limiting viral replication during the initial
stage of an infection, while cytotoxic T lymphocytes
undergo clonal selection, expansion, and differentia-
tion to competent effector cells that then are respon-
sible for eliminating the virus.

 

43

 

 CD8 cytotoxic
T lymphocytes have a protective role in murine cyto-
megalovirus (CMV)

 

44

 

 and other viral infections.

 

45,46

 

In humans, CD8 cytotoxic T lymphocytes also pro-
vide immune protection against both initial CMV in-
fection and reactivation of quiescent CMV infec-
tion.

 

47

 

 The latter can cause life-threatening disease in
immunodeficient hosts, including recipients of allo-
geneic bone marrow or other organ transplants and
patients with the acquired immunodeficiency syn-
drome (AIDS).

 

48

 

 In recipients of allogeneic bone
marrow transplants, protection against CMV pneu-
monia correlated with the appearance of CD8 CMV-
specific cytotoxic T lymphocytes.

 

49,50

 

 Furthermore,
adoptive transfer of CMV-specific CD8 cytotoxic
T lymphocytes from an immunocompetent bone
marrow donor to an immunosuppressed recipient se-
lectively reconstitutes immunity against CMV in the
latter and thus protects the recipient from complica-
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Figure 3.

 

 The Mechanism of Action of Perforin.
As shown in Panel A, in the presence of calcium ions, perforin
monomers undergo conformational changes and bind to the
membrane of the target cell (step 1), insert themselves into the
membrane (step 2), and subsequently aggregate to form ho-
mopolymeric pore structures (steps 3 and 4). These pores may
perturb membrane permeability and result in osmotic lysis of
the target cell. Panel B shows an electron micrograph of a
mouse mastocytoma P815 cell undergoing necrosis mediated
by purified mouse perforin (

 

�

 

10,000). Large and small arrows
point to the plasma membrane and nucleus of the dying cell,
respectively. The inset shows the pore lesions (arrowheads)
detected on the membrane of erythrocytes lysed by perforin
(

 

�

 

250,000).
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tions of CMV infection (e.g., CMV pneumonia).

 

51

 

Mice with impaired CD8-mediated cytolysis clear in-
fections with influenzavirus,

 

52

 

 lymphocytic chori-
omeningitis virus,

 

53

 

 and Sendai virus

 

54

 

 poorly, pro-
viding further evidence that these cells have an
important role in protective immune reactions.

In infections with certain noncytopathic viruses,
killer lymphocytes may both clear virus and contrib-
ute to the pathologic process caused by the viral in-
fection. For example, in mice with lymphocytic chori-
omeningitis virus (LCMV) infection, LCMV-specific
cytotoxic T lymphocytes are responsible for both the
eradication of virus and the onset of serious illness,
depending on the timing of the virus infection, the
portal of entry of the virus, and the strain of virus.

 

55

 

LCMV-specific cytotoxic T lymphocytes exert their
protective effects by either directly lysing virus-
infected cells or secreting cytokines (e.g., interferon-

 

g

 

)
that inhibit viral replication, but the cytokines and
products of cell lysis can cause inflammation of tis-
sue.

 

56

 

 The identification of CD8 lymphocytes that
express perforin in situ at inflammatory foci in
LCMV-infected mice provides evidence of the in-
volvement of activated killer lymphocytes in the
pathogenesis and clearance of LCMV infection.

 

57

 

Furthermore, the inability of perforin-knockout mice
to clear LCMV infection demonstrates that perforin-
dependent cytolysis is critical for immune protection
against LCMV.

 

21,23

 

 
Because of the limited availability of animal mod-

els of human hepatitis B (HBV) infection, the mo-
lecular pathogenesis of HBV-related diseases has re-
mained obscure. However, with the use of recently
developed HBV transgenic mice, the immunobiolo-
gy and pathogenesis of acute and chronic HBV hep-
atitis have begun to be elucidated.

 

58

 

 In such mice,
MHC-class-I–restricted cytotoxic T lymphocytes can
cause apoptosis in hepatocytes with which they are
in direct contact and induce widespread liver dam-
age through the actions of cytokines and inflamma-
tory cells recruited into local sites.

 

59

 

 HBV-infected
patients with acute, self-limited hepatitis, but not
those with progression to chronic hepatitis, were
found to mount vigorous cytotoxic-T-lymphocyte
responses against HBV nucleocapsid antigens, enve-
lope antigens, and the viral polymerase.

 

60,61

 

 These
results suggest that an early, efficient immune re-
sponse involving cytotoxic T lymphocytes may result
in the lysis of most HBV-infected hepatocytes and
the clearance of virus, and at the same time cause
acute but transient hepatitis. A weak response of cy-
totoxic T lymphocytes, on the other hand, may lead
to incomplete lysis of infected hepatocytes and, hence,
the continuing replication of HBV in those cells.
Persistence of HBV infection may trigger mild but
chronic hepatocellular injury mediated by cytotoxic
T lymphocytes, manifested clinically as chronic hep-
atitis. Alternatively, hepatocytes persistently infected
by HBV may have abnormal cellular metabolism that
causes their spontaneous death, which may trigger
secondary inflammation leading to continuous de-
generation and regeneration of the liver tissue, cul-
minating in hepatocellular carcinoma.

The role of lymphocyte-mediated immune re-
sponses in human immunodeficiency virus (HIV)
infection is controversial. Although an HIV-specif-
ic cellular immune response may provide immune
protection against disease progression,

 

47,62

 

 cytotoxic
T lymphocytes may in fact contribute to the ulti-
mate immunosuppression by continuously lysing in-
fected or uninfected immune cells.

 

63,64

 

 HIV-infected
patients have strong responses of polyclonal cytotox-
ic T lymphocytes against HIV antigens soon after
initial seroconversion, which probably cause the rap-
id decline of viremia at that time.

 

65,66

 

 Moreover,
HIV-specific cytotoxic T lymphocytes can inhibit
the replication of HIV in vitro.

 

67

 

 These responses,
however, usually wane and are insufficient to eradi-
cate HIV, possibly because cytotoxic T lymphocytes
fail to combat virus harbored in lymphoid or other
reservoirs.

 

47,68

 

 As a result, AIDS eventually develops
in most HIV-infected patients.

 

62

 

 Nevertheless, in
several cohort studies, a small percentage of patients
infected with HIV have remained asymptomatic for
many years. These patients have detectable and
sometimes vigorous responses of CD8 cytotoxic
T lymphocytes specific for HIV and extremely low
viral loads, as compared with patients with progres-

 

Figure 4.

 

 Electron Micrograph of Myocardial Tissue from a Pa-
tient with Postviral Myocarditis, Showing Pore Lesions.
Representative perforin-mediated pore lesions are indicated by
arrows. The bar represents 30 nm.
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sive infection.

 

69,70

 

 Collectively, these studies provide
encouraging hints that effective immunity mediated
by cytotoxic T lymphocytes may curtail the replica-
tion of HIV and thus prevent a catastrophic out-
come. The molecular basis of this seeming cessation
of HIV replication is likely multifactorial, including
the possibility that these patients may have been in-
fected with attenuated strains of the virus.

 

71,72

 

 

 

Intracellular Bacterial and Protozoal Infections

 

In addition to controlling viral infections, cellular
immune activity has been shown to be involved in
protecting against intracellular bacteria and protozoa.
For example, both CD4 and CD8 T lymphocytes
are involved in immune protection against infection
by 

 

Listeria monocytogenes

 

. By lysing listeria-infected
cells, CD8 cytotoxic T lymphocytes may complement
CD4 cells (which secrete interferon-

 

g

 

) and macro-
phages (which respond to interferon-

 

g

 

) to facilitate
the resolution of listeriosis. This protective function
of CD8 cytotoxic T lymphocytes depends in part on
the mechanism mediated by perforin and granzymes,
because perforin-deficient mice clear primary listeria
infection inefficiently and cannot control a secondary
listeria challenge.

 

73

 

 CD8 cytotoxic T lymphocytes and
natural killer cells may control infection with other
microorganisms, such as mycobacterium, rickettsia,
and theileria, in the same way.

 

74

 

 
Infections with intracellular protozoal parasites

such as 

 

Plasmodium falciparum

 

 are a major public
health problem worldwide. In rodents, protective
immunity against malaria can be elicited by immu-
nization with radiation-attenuated malaria sporozo-
ites.75 This protection is mediated by CD8 cytotoxic
T lymphocytes capable of recognizing certain sporo-
zoite antigens (e.g., circumsporozoite protein) and
of lysing infected hepatocytes.75 Cytotoxic-T-lym-
phocyte–dependent immune reactivity against the
pre-erythrocyte stage of malaria protozoa may also
have a role in protection against P. falciparum ma-
laria in humans.76 

Trypanosoma cruzi, another intracellular parasite,
causes Chagas’ disease, which is characterized by in-
flammation and degeneration of cardiac and smooth
muscle. The affected muscles are infiltrated predom-
inantly by CD8 cells and to a lesser extent by CD4
cells, suggesting that host immune responses con-
tribute to both the control of the parasites and the
progression of clinical disease. Depletion of CD8 or
CD4 cells resulted in an increased parasite burden in
mice infected with T. cruzi,77 and mice deficient in
CD8 cells were very susceptible to infection with
T. cruzi,78 indicating the crucial role of these cells in
restraining this protozoal infection. It is likely that
inflammatory reactions triggered by both the para-
sites themselves and the specific immune responses
against the parasites contribute to the muscle in-
flammation that occurs in Chagas’ disease.77 A pro-

tective role for killer lymphocytes in other intracel-
lular protozoal infections, such as toxoplasmosis, has
also been suggested; in a recent study, CD4 cytotox-
ic T lymphocytes specific for Toxoplasma gondii were
cloned from a patient with toxoplasmosis,79 suggest-
ing that lysis of target cells mediated by CD4 cyto-
toxic T lymphocytes may be partially responsible for
the control of this infection.

Autoimmune Diseases

Killer lymphocytes have long been implicated in
the pathogenesis of autoimmune diseases. The aller-
gic encephalomyelitis that can be induced by inject-
ing rodents with myelin basic protein or whole-brain
homogenates is thought to mimic inflammatory de-
myelinating disorders such as multiple sclerosis in
humans.80 Experimental allergic encephalomyelitis
is characterized by neurologic abnormalities and
massive infiltration of lymphocytes into the central
nervous system, with injury of astrocytes induced by
cytotoxic T lymphocytes specific for myelin basic
protein.81

Killer lymphocytes have also been implicated in
the pathogenesis of other autoimmune disorders.
CD8 cytotoxic T lymphocytes and natural killer
cells have been identified in the islets of Langerhans
in mice with autoimmune nonobese diabetes82 and
the myocardial tissue of mice with myocarditis in-
duced by coxsackievirus B3.83 In addition, CD4 cy-
totoxic T lymphocytes have recently been implicat-
ed in autoimmune inflammatory colitis in mice.84

In humans, killer lymphocytes expressing perforin
and granzymes have been detected in situ in en-
docardial tissue obtained from patients with post-
viral myocarditis,85 synovial fluid in patients with
rheumatoid arthritis,86 thyroid tissue in patients
with Hashimoto’s thyroiditis,87 and aortic tissue in
patients with Takayasu’s arteritis.88 Moreover, acti-
vated killer lymphocytes have recently been impli-
cated in the pathogenesis of psoriasis.89 The pheno-
types of the killer lymphocytes infiltrating different
tissues vary substantially, including CD8 T lympho-
cytes, CD4 T lymphocytes, g/d T cells, and natural
killer cells.

The detection of perforin-mediated pore lesions
in inflamed human cardiac myocytes83 (Fig. 4) and
of the discharge of perforin from infiltrating cyto-
toxic T lymphocytes bound to cardiac myocytes90

provides convincing evidence indicating that killer
lymphocytes can lyse target cells in vivo. Further-
more, cytokines secreted by killer lymphocytes and
other inflammatory cells infiltrating the islets of
Langerhans (e.g., interferon-g) may contribute to
the development of autoimmune diabetes in mice
and humans.91 Taken together, these studies sug-
gest that killer lymphocytes may have a role in in-
ducing and augmenting cell and tissue damage in
a variety of autoimmune diseases by lysing autoan-
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tigen-expressing cells and secreting cytotoxic cyto-
kines.

Allograft Rejection

Although organ transplantation is now the treat-
ment of choice for some diseases, graft rejection re-
mains the most important factor undermining the
success of such treatment. The molecular mecha-
nisms underlying cellular allograft rejection are
thought to be cytolytic reactions mediated by killer
lymphocytes and delayed-hypersensitivity reactions.92

Lymphocytes that expressed perforin and granzyme
A or B have been detected in situ in both animals
and humans who received kidney, heart, or lung
transplants.93,94 Moreover, the extent of the expres-
sion of perforin and granzymes in intragraft lympho-
cytes correlated with the degree of graft rejec-
tion,93,95 and rejection of heart allografts differing by
a single MHC class I antigen from the recipient was
delayed in perforin-knockout mice.96 

Tumor Surveillance

Studies demonstrating tumor-specific immune re-
sponses have lent support to the possibility of im-
mune surveillance against the formation and growth
of tumor.97 The basis for this immune activity is that
immune effector cells can be activated by tumor cells
and then become capable of suppressing the growth
of or even destroying the tumor cells. The immune
cells possibly involved in tumor surveillance include
killer lymphocytes.97 In situ hybridization and im-
munohistocytochemical techniques were used to de-
tect CD8 cytotoxic T lymphocytes and natural killer
cells expressing perforin and granzyme B in tissue
sections of follicular lymphomas98; these immune
cells were apparently present as part of the host
immune responses against the tumorous B lym-
phocytes. Perforin-knockout mice are incapable of
rejecting some types of grafted tumor cells,21 sug-
gesting a role for perforin-mediated lysis in tumor
surveillance. Killer lymphocytes may execute the sur-
veillance function not only by directly lysing tumor
cells but also by secreting cytostatic or cytocidal cy-
tokines (e.g., tumor necrosis factor a). On the basis
of these possibilities, patients with advanced malig-
nant melanoma, renal-cell carcinoma, lung cancer,
or malignant glioma refractory to conventional ther-
apies have been treated with lymphokine-activated
killer cells or tumor-infiltrating lymphocytes with or
without interleukin-2 or other cytokines.99,100 Al-
though such treatments were effective in several tu-
mor models in mice,101 their efficiency in the pa-
tients was limited.

CONCLUSIONS

Recent advances in the understanding of the basic
biology of lymphocyte-mediated cytolysis and its
physiologic or clinical relevance have shed light on

the development of novel immunotherapeutic ap-
proaches to a variety of diseases. Active immuniza-
tion using vaccines capable of inducing or enhanc-
ing immunity mediated by cytotoxic T lymphocytes
is being tested for viral and protozoal infections and
certain tumors. Adoptive immunotherapy for ad-
vanced cancer or CMV infection in immunocom-
promised patients, although still facing formidable
obstacles, has had some preliminary success. In a
more specific context, once the structures and mech-
anisms of action of perforin, granzymes, and Fas lig-
and are further elucidated, it may be possible to de-
velop novel therapeutic agents based on or targeting
these lymphocyte cytotoxins.
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