Neoplasia I Definitions, Terminology, and Morphology

Patrice Spitalnik, MD pfs2101@columbia.edu

Tissue Type	Cell Type	Benign	Malignant
Conn.Tissue	Fibroblast	Fibroma	Fibrosarcoma
	Adipocyte	Lipoma	Liposarcoma
	Cartilage	Chondroma	Chondrosarcoma
	Bone	Osteoma	Osteosarcoma
Vessels, etc	Endothelial cells	Hemangioma	Angiosarcoma
	Meninges	Meningioma	Invasive meningioma
Muscle	Smooth muscle	Leiomyoma	Leiomyosarcoma
	Skeletal muscle	Rhabdomyoma	Rhabdomyosarcoma
Epithelium	Stratified Squamous	Squamous papilloma	Squamous cell carcinoma
	Ducts or glands	Adenoma	Adenocarcinoma
Melanocytes	Melanocytes	Nevus	Melanoma

Cancer - second leading cause of deaths in the US after CV disease

Characteristics of Benign & Malignant Neoplasms

- Tissue Architecture histologic features
- Cytologic features
- Terminology
 - Differentiation/anaplasia
 - Dysplasia
 - Rate of growth
 - Local Invasion
 - Metastasis

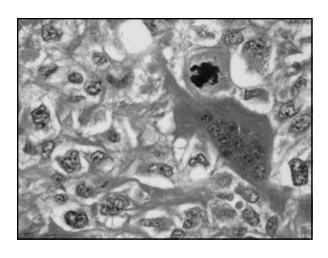
Nomenclature

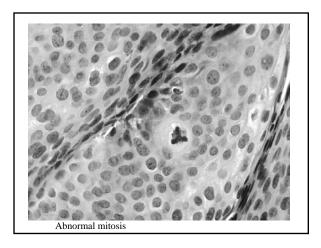
- Neoplasia "new growth"
- Neoplasms arise from genetic changes that allow excessive, unregulated cell proliferation
- Cell type of parenchyma + OMA

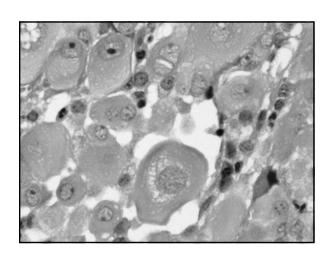
Characteristics of Benign & Malignant Neoplasms

- Tissue architecture
 - Benign well circumscribed, usually encapsulated
 - Malignant poorly circumscribed, lack of cell polarity and epithelial cell connections

Characteristics, con't.

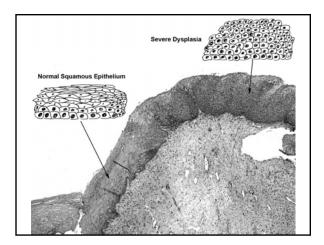

- Cytologic features
 - Benign small, uniform cells, no visible nucleoli
 - Malignant large, pleomorphic cells with large hyperchromatic nuclei, N:C ratio 1:1 (nl. 1:4), large nucleoli, irregular nuclear outlines


Anaplasia


• Neoplasm without apparent differentiation, undifferentiated cells

Differentiation

- Refers to original parenchymal cell, tissue appearance and function
 - Benign well differentiated, resembles cell of origin with few mitoses, secretion of products, hormones, mucins, etc.
 - Malignant well to poorly differentiated with numerous, bizarre mitoses

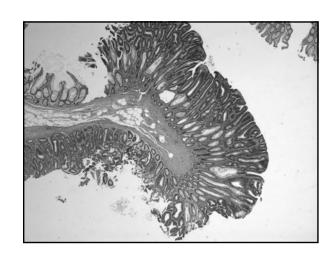


Dysplasia

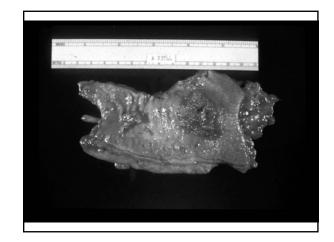
- Disorderly cellular maturation
- If, full epithelial involvement –carcinoma in situ, pre-invasive stage
- HPV cervix
- Smoking- respiratory tract
- GERD esophagus

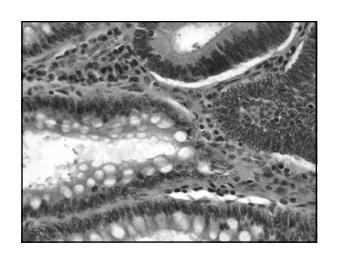
Local Invasion

- Benign most encapsulated and cannot invade or spread to other sites
- Malignant not encapsulated and can invade

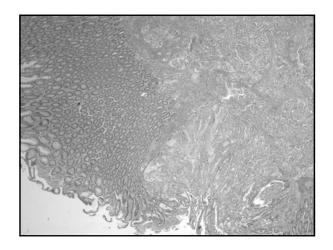


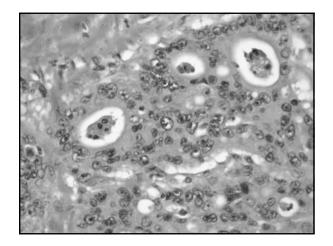
Benign Neoplasia

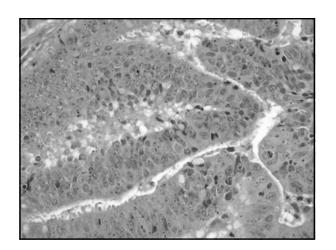

- · Remains localized
- Cannot spread to other sites
- Most patients survive, but some tumor locations can cause serious problems (brain stem, spinal cord, pituitary)


Rate of Growth

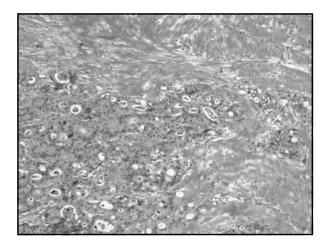
- Benign slower growth, some dependent on hormones, leiomyoma
- Malignant more rapid growth, areas of necrosis

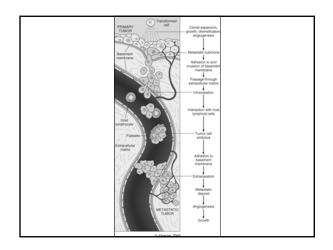


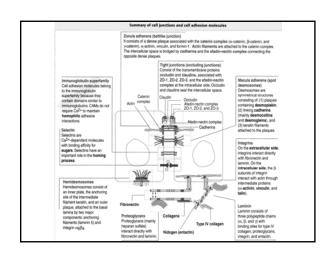


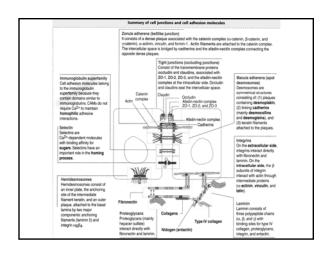

Malignant Neoplasia

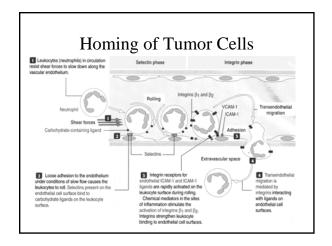
- Can invade and destroy adjacent tissue
- Can spread to distant sites, metastasis

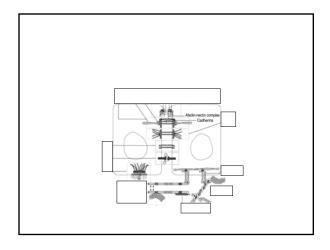


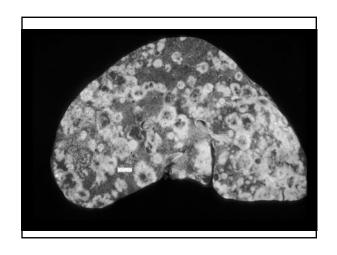

Metastasis

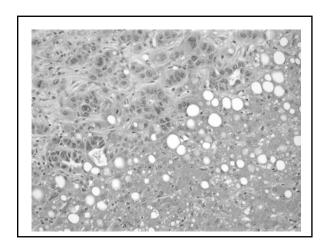

- Dissemination to other organs:
 - Seeding of body cavities (ovary)
 - Lymphatic spread (carcinoma)
 - Hematogenous dissemination (sarcoma)

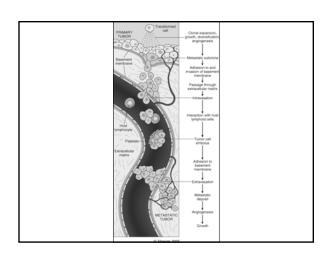


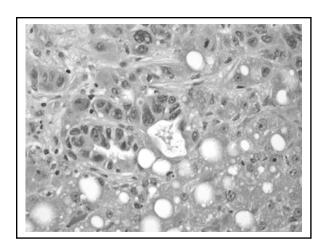

Steps of Successful Metastasis

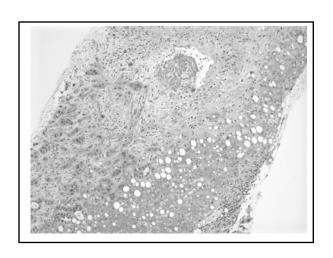

- **Detachment of tumor cells** (E-cadherin loss)
- **Degradation of ECM** (MMP's overexpressed and TIMP's reduced)
- Attachment to new ECM proteins (cleavage products of collagen and laminin bind to receptors on tumor cells stimulate migration
- Migration of tumor cells (cytokines from tumor cells direct movement, autocrine, and stromal cells produce paracrine effectors, HGF/SCF, for motility that bind to tumor cells)

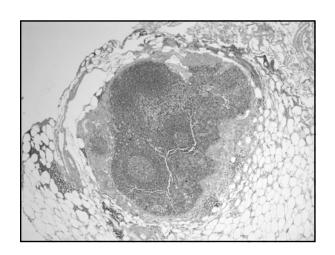


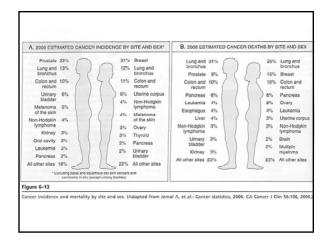


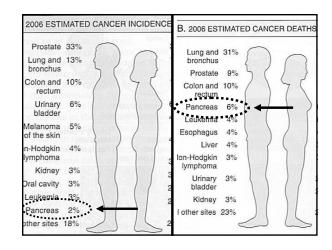


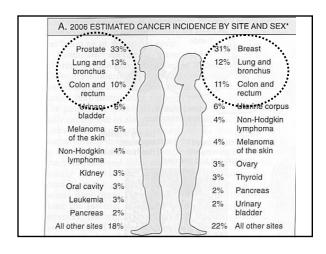

Homing of Tumor Cells

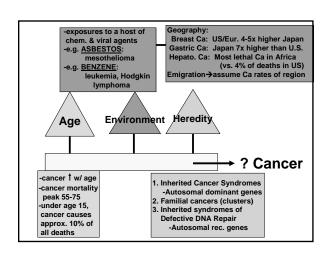

- Most metastases predicted by vascular and lymphatic drainage
- Some homing related to expression of endothelial adhesion molecules
- Chemokines and chemokine receptors are also involved in homing. (breast ca cells-chemokine receptors: CXCR-4 and -7 bind to the chemokines CXCL12 and CCL21 on distant organs)
- After extravasation, tumor cells survive only in receptive ECM and stroma




Cinical Aspects of Neoplasia


1. Epidemiology:


Cancer incidence—Cancer deaths


- 2. Pathogenetic factors: a balance of risks
- 3. Clinical effects of cancer
- 4. Death in cancer
- 5. Grading and Staging
- 6. Diagnosis

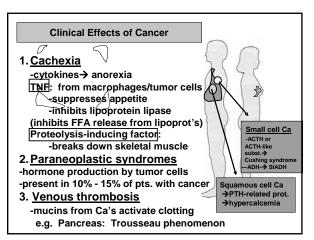


Table 6-3 Inherited	ole 6–3 Inherited Predisposition to Cancer		
Inherited Cancer Syndromes (Autosomal Dominant) Gene Inherited Predisposition			
RB	Retinoblastoma		
p53	Li-Fraumeni syndrome (various tumors)		
p16INK4A	Melanoma		
APC	Familial adenomatous polyposis/colon cancer		
NF1, NF2	Neurofibromatosis 1 and 2		
BRCA1, BRCA2	Breast and ovarian tumors		
MEN1, RET	Multiple endocrine neoplasia 1 and 2		
MSH2, MLH1, MSH6	Hereditary nonpolyposis colon cancer		
PATCH	Nevoid basal cell carcinoma syndrome		

Familial Cancers Familial clustering of cases, but role of inherited predisposition not clear for each individual Breast cancer (not linked to BRCA1 or BRCA2) Ovarian cancer Pancreatic cancer Inherited Autosomal Recessive Syndromes of Defective **DNA Repair** Xeroderma pigmentosum Ataxia-telangiectasia Bloom syndrome Fanconi anemia

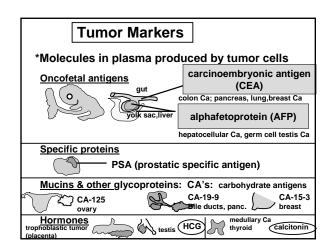
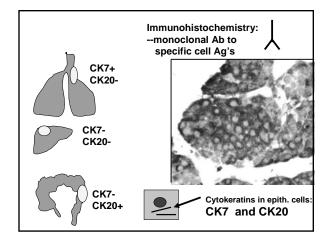
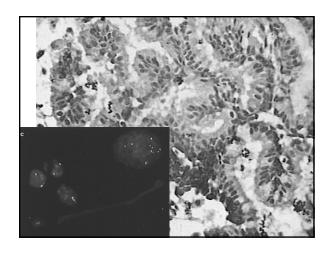
G₁/S Checkpoint: **Breast Ca** delays cell cycle to allow Ovarian Ca ▼. BRCA-1 Dom. for DNA repair by BRCA-2 homologous recombination Aut. Recessive WXXX Bloom Syndrome light pyrim. Fanconi anemia as I Uman -marrow hypofunc. -hypoplasias: kidney/spleen/bond pyrim. Ataxia-telangiectasia (nucleotide excision -mutation of ATM gene: repair) pathway DNA dbl.strd. break repa Xeroderma (kinase/phosph. p53→ Pigmentosum G1 arrest or apoptosis)→ -loss of Purkinje cells/atax V/V/V/repair -skin cancers immunodef./lymphoid malign

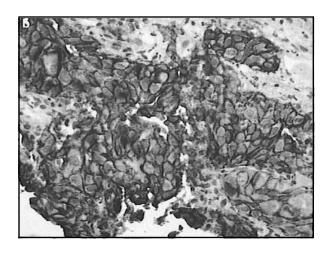
Death in Cancer

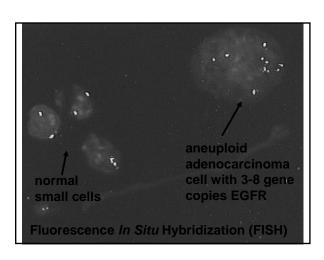
- 1. Overwhelm organ function
 - -liver: ↓coagulation, other protein synthesis
 - -lung: ↓ diffusion/oxygenation
 - -pancreas: biliary obstruction/liver mets → anorexia
- 2. Pulmonary embolus (pro-thrombotic Ca's)
- 3. Progressive somnolence: hypercalcemia, etc.
- 4. Systemic electrolyte imbalances:
 - → cardiac arrhythmia
 - → ↓ mentation
- 5. Tumor-related products:
 - -depression/other CNS effects

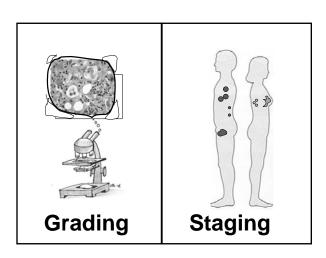
Diagnosis of Cancer

- •History—physical—occupation—exposure
- Radiology
- •Blood tests: tumor markers
- Morphologic Diagnosis
 - -light microscopy: biopsy
 - -cytology (Fine Needle Aspiration—FNA)
 - -immunohistochemistry
 - -fluorescence in situ hybridization (FISH)
 - -molecular probes, incl. gene microarray
 - -flow cytometry (lymphomas, leukemias)


Table 2. Frequency of high epidermal growth factor receptor (EGFR) expression in lung cancer by histologic characterization


Histology	EGFR expression, % (n)	
Small cell	0 (19)	
Adenocarcinoma	65 (563)	
Large cell	68 (72)	
Squamous	84 (754)	


Reprinted from Bunn PA Jr, Franklin W. Epidermal growth factor receptor expression, signal pathway, and inhibitors in non-small cell lung cancer. Semin Oncol 2002;29(suppl 14):38–44, with permission from Elsevier.

