Wound Healing
Tissue Repair: Regeneration and Fibrosis
Patrice Spitalnik, MD
Pfs2101@columbia.edu

Lecture Outline
• Cutaneous wound healing
• Control of Cell Proliferation – cell cycle
• Growth Factors
• Extracellular matrix
• Regeneration or Repair (scar) Outcomes
• Primary and Secondary Intention
• Pathologic repair
Cutaneous Wound Healing

- Formation of fibrin-platelet clot
- Leukocyte recruitment
- Neovascularization and cell proliferation
- Tissue remodeling

Events in Wound Healing

- **Blood clot** temporarily closes wound
- **Platelets** in a fibrin mesh of cross-linked fibrin formed when thrombin cleaves fibrinogen
 - PDGF stored in alpha granules of platelets released on platelet degranulation
- **Leukocytes** arrive at wound site
 - Keratinocytes and endothelial cells express cytokine CXC and CXC receptor which recruits neutrophils, monocytes, and lymphocytes to wound site (CXC receptor gene deletion results in delayed wound healing)
- **Neutrophils** arrive within minutes of injury
 - Release proinflammatory cytokines to activate local fibroblasts in dermis keratinocytes in epidermis

Events 2

- **Monocytes** recruited next and become macrophages
 - Produce cytokines, growth factors and angiogenic factors
- **New blood vessels** develop and organize granulation tissue (four days after injury)
- **Reepithelialization** starts when keratinocytes of stratum basale migrate in from edges using F-actin containing lamellipodia
 - Leading edge keratinocytes disrupt hemidesmosomes and dissolve fibrin clot barrier by upregulating plasminogen activator (plasminogen to plasmin)
 - MMP’s produced by dermal fibroblasts help to free migrating keratinocytes
- Epidermal growth factor family: EGF, TGFα, heparin binding EGF and keratinocyte growth factor drive reepithelialization

Events 3

- Within 3-4 days after injury connective tissue of dermis contacts bringing wound margins closer
- Local PDGF and TGFβ drive local fibroblasts to proliferate, infiltrate clot and deposit ECM and type III collagen
- After 1 week, some wound fibroblasts become myofibroblasts (resemble smooth muscle) and wound contracture results

Tissue Types

- **Continuously Dividing (labile)**
 - Hematopoietic and surface epithelia

- **Stable**
 - Liver, kidney, pancreas, smooth muscle, endothelial cells, fibroblasts

- **Permanent**
 - Neurons, skeletal and cardiac muscle

Growth Factors in Tissue Repair

- Vascular Endothelial growth factor (VEGF) – increased vascular permeability
- Transforming Growth Factor-Beta (TGF-B)
- Platelet Derived Growth Factor (PDGF)
- Epidermal Growth Factor (EGF)
- Fibroblast Growth Factor (FGF)
Extracellular Matrix

- Interstitial matrix – fibers, cells and ground substance
- Basement membrane – nonfibrillar collagen and laminin underlying epithelium and surrounding blood vessels

Role of ECM

- Mechanical Support – collagen and elastin
- Provides anchorage, cell migration, cell polarity
- Substrate for cell growth with tissue microenvironments
- Controls cell proliferation and differentiation –
 - PG’s bind growth factors and sequester them in high concentration
 - Fibronectin and laminin stimulate cells via integrin receptors

FGF stimulates keratinocyte migration, wound contracture and matrix deposition
Classic Stages of Wound Repair

- Inflammation – until 48 hrs. after injury
- New tissue formation – 2-10 days after injury
- Remodeling – 1-12 months after repair

Model of Leukocyte Transmigration

Wound Repair and Regeneration

Patch of fibroblasts with disorganized ECM

<table>
<thead>
<tr>
<th>Injury to tissue</th>
<th>Functional tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scar</td>
<td>Lung</td>
</tr>
<tr>
<td>Non-functional tissue</td>
<td>Kidney</td>
</tr>
<tr>
<td></td>
<td>Heart</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
</tr>
<tr>
<td></td>
<td>Spleen</td>
</tr>
</tbody>
</table>
Macrophages in inflammation and repair

Repair By Connective Tissue

- Formation of new blood vessels (angiogenesis)
- Migration and proliferation of fibroblasts
- Deposition of ECM (scar)
- Maturation and reorganization of fibrous tissue (remodeling)

Angiogenesis

- Proteolysis of vessel basement membrane
- Endothelial cell migration and proliferation
- Pericyte recruitment
- New blood vessels sustain granulation tissue

Two types of angiogenesis
Scar Formation

- Fibroblast proliferation and migration
 - PDGF, FGF, TGF-beta mainly from macrophages
- ECM deposition
 - TGF-beta – **potent agent of fibrosis**

ECM and Tissue Remodeling

- Outcome of repair: **balance** between **synthesis** and **degradation** of matrix
 - **MMP’s**: matrix metalloproteinases:
 made by fibroblasts, macrophages, neutrophils, epithelial cells destroy matrix
 activated by proteases and plasmin and inhibited by
 - **TIMP’s**: tissue inhibitors of matrix metalloproteinases:
 synthesized by mesenchymal cells to control degradation
Matrix Metalloproteinase Regulation

1. Stimulation
 - PDGF
 - EGF
 - IL-1/TNF

2. Inhibition
 - TGF-beta
 - Steroids

3. Activation
 - Procollagenases
 - Prostromelysins

4. Collagenase
 - Stromelysin

ECM → TIMPs → Degraded ECM

Possible Outcomes after Injury

- Injury
 - Response
 - Acute Inflammation
 - Minimal necrosis
 - Exudate resolved
 - Fibrinopurulent
 - Normal tissue
 - Scarring
 - Fibrinopurulent
 - Pericarditis, peritonitis
 - Necrosis
 - Permanent cells

Classic Stages of Wound Repair

- Inflammation – until 48 hrs. after injury
- New tissue formation – 2-10 days after injury
- Remodeling – 1-12 months after repair

Regeneration

- If the connective tissue framework is intact
- If the cells are not post-mitotic
 - THEN:
 - Complete restoration of the structure and function of the tissue is possible
Possible Outcomes after Injury

- **Injury**
- **Response**
 - Acute Inflammation
 - Stimulus Promptly Destroyed
 - Minimal necrosis
 - Exudate resolved
 - Normal tissue
 - Mild burn
 - Exudate organized
 - Scarring
 - Fibrinopurulent
 - Pericarditis, peritonitis
 - Normal tissue
 - Lobar Pneumonia
 - Stimulus Not Destroyed
 - Necrosis
 - Labile or stable cells
 - Framework intact
 - Framework destroyed
 - Permanent cells
 - Normal tissue
 - Scar
 - Bacterial abscess
 - Myocardial infarction

Possible Outcomes after Injury

- **Injury**
- **Response**
 - Acute Inflammation
 - Stimulus Promptly Destroyed
 - Minimal necrosis
 - Exudate resolved
 - Normal tissue
 - Mild burn
 - Exudate organized
 - Scarring
 - Fibrinopurulent
 - Pericarditis, peritonitis
 - Normal tissue
 - Lobar Pneumonia
 - Stimulus Not Destroyed
 - Necrosis
 - Labile or stable cells
 - Framework intact
 - Framework destroyed
 - Permanent cells
 - Normal tissue
 - Scar
 - Bacterial abscess
 - Myocardial infarction
Bone marrow releases monocytes.

Promotes removal of damaged heart tissue.

Spleen

Injured heart (myocardial infarction)

Calling Up The Reserves:

Inflammatory monocytes released into blood.

Monocyte

CCR2

MCP-1

Angiotensin II

Monocyte

Ly-6C

SCIENCE VOL 325 31 JULY 2009

Inflammatory response
Repair by Fibrosis

- Angiogenesis
- Granulation tissue
- Migration and proliferation of fibroblasts
- Deposition of extracellular matrix
- Organization of collagen “remodeling”
- Fibrosis – scar formation

Macrophages in healing and fibrosis

Fibrotic response to toxin-mediated injury

- Poorly understood:
 - Liver Hepatitis B,C
 - Pulmonary fibrosis

Scarring in the Liver

- Healing by fibrosis after inflammation
- TGF beta implicated in excessive collagen formation

Chronic Peptic Ulcer

Fibrosis below the ulcer bed
Overview of Cutaneous Wound Healing

- A defect in the skin occurs
- Fibrin clot fills in defect – scab forms
- Epithelial regeneration beneath scab
- Granulation tissue – angiogenesis
- Wound contraction
- Collagen remodeling

Cell Migrations in Wound Healing

- **Platelets** form a blood clot and secrete fibronectin (FN), PDGF and TGF-beta
- **Neutrophils** arrive within minutes up to 24 hrs
- **Macrophages** move in (by 48-96 hrs) as part of granulation tissue and secrete fibronectin
- **Keratinocytes** or other epithelial cells detach from the basement membrane at wound edge and migrate on fibronectin rich matrix across wound to fill in defect (cells switch receptors from those for BM to FN receptors)
Healing by Primary Intention

- Surgical incision
- Edges easily joined together
- Small amount of granulation tissue
- Little fibrosis
- Wound strength 70-80% of normal by 3 months

Healing by Second Intention

- Large wound, may be infected
- Edges not brought close together
- Large amount of granulation tissue
- Scar formation and contracture

Inhibition of Repair

- Infection with inadequate nutrition (Vitamin C is essential for collagen)
- Glucocorticoids inhibit inflammation with decreased wound strength and less fibrosis.
- Poor perfusion due to diabetes or atherosclerosis.
- Foreign bodies left in the wound.
- Chronic inflammation leads to excess, disabling fibrosis as in rheumatoid arthritis, pulmonary fibrosis and cirrhosis.
Diabetic Foot Ulcer Case #1

- A 52 year old woman has had fairly well controlled type 2 diabetes mellitus for the past 20 years.
- In the last three months, she has noticed a non-healing ulcer on her heel.
- She asks you what can be done to make it heal better.

Possible New Therapy

- Application of VEGF alone to wounds in an animal model of diabetes (wound repair is dysregulated in DM) can normalize healing.

Diabetic Foot Ulcer Case #2

- A 63 year old male has had Type 2 diabetes mellitus for the past 10 years.
- He requires insulin.
- He presents to you with the complaint of a painless sore on the sole of his foot directly beneath a metatarsal head.
- He asks why his foot has difficulty healing.
Inhibition of Repair

- Foreign body in wound

Abnormal Repair Processes

- Inadequate scar formation - dehiscence, ulceration
- Excessive scar formation – keloids
- Contracture – exaggeration of normal process (soles, palms, thorax) especially with serious burns
<table>
<thead>
<tr>
<th>VEGF</th>
<th>EGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Produced by mesenchymal cells
• Increases vascular permeability
• Mitogenic for endothelial cells</td>
<td>• Produced by activated macrophages
• Mitogenic for keratinocytes and fibroblasts
• Stimulates granulation tissue formation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TGF-beta</th>
<th>FGF</th>
</tr>
</thead>
</table>
| • Produced by:
 – Platelets and macrophages
MOST IMPORTANT FACTOR IN WOUND HEALING
• Actions:
 – Monocyte chemotaxis
 – Fibroblast migration and proliferation
 – Angiogenesis and fibronectin synthesis
 – Collagen and ECM:
 • Increased synthesis
 • Decreased degradation by MMP’s, increased TIMP’s | • Produced by macrophages, T cells
• Chemotactic for fibroblasts
• Mitogenic for fibroblasts and keratinocytes
• Stimulates keratinocyte migration, angiogenesis, wound contraction and matrix production |

<table>
<thead>
<tr>
<th>PDGF</th>
<th>Extra Key Points</th>
</tr>
</thead>
</table>
| • Produced by platelets, macrophages, endothelial cells
• Chemotactic for neutrophils, macrophages, fibroblasts, smooth muscle cells
• Stimulates production of MMP’s, fibronectin and hyaluronic acid
• Stimulates angiogenesis | • How does each tissue restore itself to prevent scar?
• Humans lose the ability to prevent scar after fetal life
• Scar prevents tissue regeneration
• What is the purpose of the scar? |