III. Neuropathology of Cerebrovascular Disease

Physiology of cerebral blood flow

Brain makes up only 2% of body weight

Percentage of cardiac output: 15-20%
Percentage of O_2 consumption (resting): 15%

Distribution of circulation:
- anterior circulation > posterior circulation (70%) (30%)
- gray matter > white matter
Blood flow is a function of:
- perfusion pressure
- resistance of vascular bed as modified by:
 - arterial pressure
 - pCO_2, pH, and oxygen
 - intracranial pressure
 - blood viscosity
 - neurotransmitters??

Relatively constant blood flow primarily governed by autoregulatory mechanism
- Striatum: Lenticulostriate arteries from MCA (mostly) & ACA
- Globus Pallidus: Ant. choroidal arteries from ICA
- Thalamus & Hippocampus: PCA
Epidemiology of stroke

American Heart Association:
USA - almost 4 million stroke survivors
- almost 730,000 new strokes occur per year

Overall age adjusted incidence rates: 100 to 300 / 100,000

Overall, stroke accounts for about 10% of all deaths in most industrialized countries.

Most of these deaths are among persons over the age of 65.

Average age-adjusted stroke mortality in US: 50 to 100/100,000

Stroke
Cerebrovascular accident
"Brain attack"

Defined as an abrupt onset of focal or global neurological symptoms caused by ischemia or hemorrhage.

By convention, symptoms must continue for >24 hours and is usually associated with permanent damage to brain tissue.

If symptoms resolve within 24 hours the episode is called a transient ischemic attack - TIA.
Frequencies of stroke subtypes

- Cerebral infarction: 60-80%
- Intracerebral hemorrhage: 10-30%
- Subarachnoid hemorrhage: 5-10%
- Other (unspecified): 3-25%

Determinants of stroke

Nonmodifiable risk factors
- Age
- Gender
- Ethnicity
- Heredity

Modifiable risk factors
- Hypertension
- Diabetes
- Cardiac disease (atrial fibrillation)
- Hypercholesterolemia
- Cigarette smoking
- Alcohol abuse
- Physical inactivity
Annual risk of stroke (all subtypes combined)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Approximate population risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-14</td>
<td>1 in 100,000</td>
</tr>
<tr>
<td>15-24</td>
<td>1 in 20,000</td>
</tr>
<tr>
<td>25-34</td>
<td>1 in 10,000</td>
</tr>
<tr>
<td>35-44</td>
<td>1 in 5,000</td>
</tr>
<tr>
<td>45-54</td>
<td>1 in 1,000</td>
</tr>
<tr>
<td>55-64</td>
<td>1 in 300</td>
</tr>
<tr>
<td>65-74</td>
<td>1 in 100</td>
</tr>
<tr>
<td>75-85</td>
<td>1 in 50</td>
</tr>
<tr>
<td>>85</td>
<td>1 in 33</td>
</tr>
</tbody>
</table>

Cerebral infarction

Morphologic Evolution
Sequence of microscopic changes in brain infarcts

> 1 hour
- Microvacuoles within neurons (swollen mitochondria)
- Perineuronal vacuolation (swollen astrocytic processes)

4-12 hours
- Neuronal cytoplasmic eosinophilia
- Disappearance of Nissl bodies
- Pyknotic nuclei
- Leakage of blood-brain barrier
Sequence of microscopic changes in brain infarcts

> 1 hour
Microvacuoles within neurons
(swollen mitochondria)
Perineuronal vacuolation
(swollen astrocytic processes)

4-12 hours
Neuronal cytoplasmic eosinophilia
Disappearance of Nissl bodies
Pyknotic nuclei
Leakage of blood-brain barrier

15-24 hours
Neutrophil infiltration begins

2-3 days
Macrophages (foam cells) appear

5 days
Neutrophilic infiltration ceases

~ 1 week
Proliferation of astrocytes around core infarct
Sequence of microscopic changes in brain infarcts

<table>
<thead>
<tr>
<th>Time</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1 hour</td>
<td>Microvacuoles within neurons (swollen mitochondria)</td>
</tr>
<tr>
<td></td>
<td>Perineuronal vacuolation (swollen astrocytic processes)</td>
</tr>
<tr>
<td>4-12 hours</td>
<td>Neuronal cytoplasmic eosinophilia</td>
</tr>
<tr>
<td></td>
<td>Disappearance of Nissl bodies</td>
</tr>
<tr>
<td></td>
<td>Pyknotic nuclei</td>
</tr>
<tr>
<td></td>
<td>Leakage of blood-brain barrier</td>
</tr>
<tr>
<td>15-24 hours</td>
<td>Neutrophil infiltration begins</td>
</tr>
<tr>
<td>2-3 days</td>
<td>Macrophages (foam cells) appear</td>
</tr>
<tr>
<td>5 days</td>
<td>Neutrophilic infiltration ceases</td>
</tr>
<tr>
<td>~ 1 week</td>
<td>Proliferation of astrocytes around core infarct</td>
</tr>
</tbody>
</table>

Topographic features – size & extent of infarct

- **Site of occlusion**

- **Presence/absence of anastomosis**
 - Ophthalmic artery (EC-IC)
 - The circle of Willis
 - Leptomeningial anastomosis
Underlying conditions of infarction

I. Atherosclerosis
II. Arteriolar sclerosis
(small artery disease)

- aging
- sustained systemic hypertension
- diabetes mellitus
III. Cerebral embolism

Underlying conditions of infarction
Some causes of cerebral embolism

Large or small emboli:
- atrial fibrillation
- myocardial infarction
- bacterial endocarditis
- rheumatic endocarditis
- nonbacterial endocarditis
- cardiac surgery
- arterial thrombosis

Small emboli:
- ulcerated atheroma
- trauma (fat emboli)
Underlying conditions of infarction

IV. Vasculitis/vasculitides
Inflammatory CNS vascular diseases

Non-infectious vasculitides

Primary cranial and/or cerebral inflammations
- Takayasu’s arteritis
- giant cell or temporal arteritis
- primary angiitis of the CNS (granulomatous angiitis)

Manifestations of systemic diseases
- systemic lupus erythematosus
- polyarteritis nodosa
- Wegener’s granulomatosis
- Churg-Strauss syndrome
- Behcet’s syndrome
- malignancy related

Drug induced vasculitis

Infectious vasculitis

Cerebral hemorrhage

- intracerebral
- subarachnoid

- epidural /subdural (trauma)
Intracerebral hemorrhage

Incidence:
Caucasian populations - 16-32 / 100,000
Asians > African Americans > Caucasians

Causes of non-traumatic ICH:
- hypertension 50%
- cerebral amyloid angiopathy 12%
- anticoagulants 10%
- tumors 8%
- illicit and licit drugs 6%
- arteriovenous malformations and aneurysms 5%
- miscellaneous 9%

Cerebral hemorrhage

I. Hypertensive hemorrhage
Cerebral hemorrhage

II. SAH subarachnoidal hemorrhage

Frequency: 5-9% of all strokes
Reported annual incidence: 10-11 / 100,000

• Non-traumatic conditions
 ♦ rupture of aneurysm* 80%
 ♦ arteriovenous malformations** 5-10%
 ♦ unidentified cause 10-15%

• Secondary
 ♦ intracerebral hemorrhage
 ♦ intraventricular hemorrhage

• Traumatic
Underlying conditions of SAH

1. Intracranial (saccular) aneurysms

- Frequency at autopsy: 1 to 6%
- Age at autopsy: 30 - 70 yrs
- Sex ratio: F:M = 3:2
- Associated hypertension: 50%
- Familial: Rare
- Location: Anterior circulation > 80%
 Posterior circulation < 20%
- Multiple: 20%
- Ruptured aneurysms: Size > 0.5 cm
- Mortality: 60%
Underlying conditions of SAH/IPH

2. Vascular malformations
Arteriovenous malformations

<table>
<thead>
<tr>
<th>Clinical onset:</th>
<th>Age 10 to 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex ratio:</td>
<td>M:F = 2:1</td>
</tr>
<tr>
<td>Location:</td>
<td>Usually supratentorial</td>
</tr>
<tr>
<td>Clinical presentation:</td>
<td>Headache, seizures, focal neurologic deficit, hemorrhage</td>
</tr>
<tr>
<td>Angiography:</td>
<td>Evidence of arteriovenous shunt and abnormal blood vessels</td>
</tr>
<tr>
<td>Mortality after hemorrhage:</td>
<td>20%</td>
</tr>
</tbody>
</table>
Genetics and Stroke

Genetic cardiovascular disorders leading to thromboemboli in CNS

Arterial dissection, Cardiomyopathies, Neuromuscular diseases, Metabolic conditions (e.g. Homocysteinuria, Coagulopathies, Dyslipidaemia)

Genetic metabolic disorders prone to obstruct CNS vessels (e.g. Fabry’s disease)

CADASIL (AD arteriopathy with subcortical infarcts and leukoencephalopathy)

 notch 3

MELAS (Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes)

 mitochondrial DNA mutations