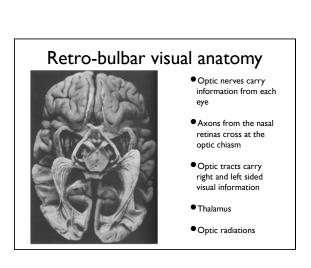

The Patient with Visual Loss: Localization of Neuropathologic Disease and Select Diseases of Neuropathologic Interest


Steven A. Kane, M.D., Ph.D.
The Edward S. Harkness Eye Institute

Shared embryology Eye and brain develop from neuro-ectoderm Their functions and responses to disease are related Blood ocular/brain barriers The eye is a window into the brain and systemic disease

Ocular anatomy Unique example of structure supporting function Optics Neuro-transduction Neuro-transmission

Retinal nerve fiber layer anatomy Papillomacular bundle begins the macular-cortical projection Ganglion cells and axons respect the horizontal raphe

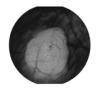

Localization and characterization of impaired vision

- Pattern of visual loss may identify the lesion size
- Disease course and accompanying symptoms may clarify its nature

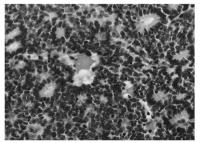
Patterns of visual loss Scotomas Central vision Peripheral vision Symmetry/congruity change as information nears cortex

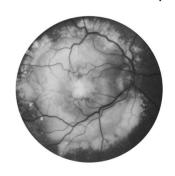
Ocular causes of impaired vision

- Refractive error
- Media opacity
- Retinal disease
- Optic nerve disease



Retinoblastoma


- Most common intraocular malignancy in childhood
- Leukocoria and strabismus
- 13 q14 mutation
- Spreads along the optic nerve into the brain

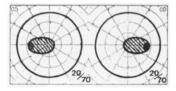


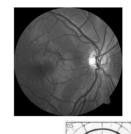
Retinoblastoma

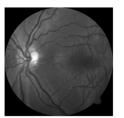
A rapidly growing primitive neuroectodermal tumor that may show retinal differentiation in the form of Flexner-Wintersteiner rosettes

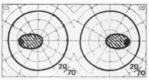
Retinal causes of impaired vision

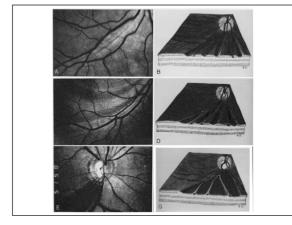



- Symptoms
- Age-related macular degeneration is the most common cause of visual loss
 65 years
- Diabetic retinopathy is the most common cause of visual loss
 65 years


Symptoms and signs of optic nerve disease


- Blurred vision
- Dimming of vision with decreased color perception
- Decreased pupillary response to light
- Centrocecal, and arcuate scotomata


Centrocecal scotomas



Bilateral optic atrophy with centrocoecal scotoma

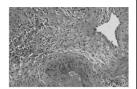
- Hereditary (dominant, Leber's)
- Toxic (medications, methanol, heavy metals)
- Nutritional (folate, B12)
- Demyelinating (optic neuritis, multiple sclerosis)

Unilateral optic nerve disorders

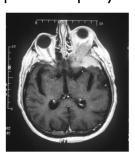
- Ischemic (anterior ischemic optic neuropathy, retinal occlusive disease)
- Compressive (orbital, anterior fossa)
- Inflammatory (demyelinating, infectious, rheumatologic)

AION

- Patients usually > 50
- Sudden, usually stable visual loss
- Altitudinal scotoma
- Optic atrophy in 4-6 wk
- Causes
 - Idiopathic (anatomic)
 - Giant cell arteritis



Giant cell arteritis


- Senior citizens
- Subacute, granulomatous, stenosing arterial disease
- Headache, amaurosis fugax, arthralgia, myalgia, weight loss
- Brain, cardiac, eye, skin, muscle end artery damage

Compressive optic neuropathy

- Progressive scotoma
- Initially normal disc
- Signs of atrophy
 - Decrease in color
 - Decrease in vessels
 - Decrease in NFL

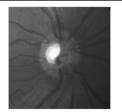
Inflammatory optic neuropathy

- Children and younger adults
- Centrocecal, arcuate, and hemianopic scotomas
- Subacute, often painful
- Retrobulbar neuritis or papillitis

Papillitis and retrobulbar neuritis Childhood Adult

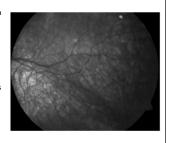


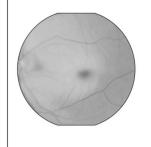
Other causes of optic atrophy


- Glaucoma
- Secondary to retinal degeneration
- Central retinal artery obstruction
- Post-papilledema
- Congenital anomalies: hypoplasia, coloboma

Glaucoma

- Common, usually bilateral, often asymmetric optic neuropathy
- Initial selective damage to branching axons

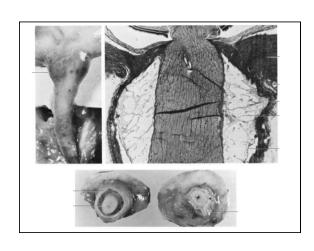




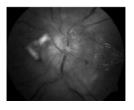
Retinal degeneration

- Photoreceptor and/or retinal pigment epithelium disturbance
- Vascular narrowing is earliest sign
- Pigment released from damaged RPE cells clumps or migrates into the retina
- Many causes

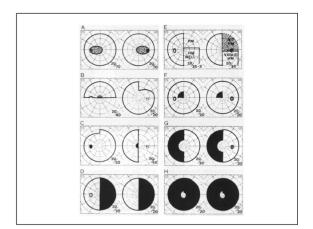
Central retinal artery obstruction



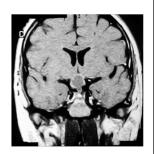
Papilledema


- versus other disc swelling
- Intracranial mass
- Pseudotumor cerebri
- Hydrocephalus
- Intracranial hemorrhage
- Venous thrombosis
- Meningitis

Papilledema in a 12 year old with idiopathic intracranial hypertension

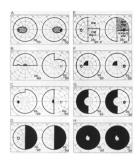


Other causes of disc swelling


- Optic neuritis
- Anterior ischemic optic neuropathy
- Central retinal vein occlusion
- Diabetic papillopathy
- Infiltrative disorders
- Hypertension
- Pseudopapilledema

Lesions of the chiasm

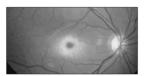
- Usually compressive
- Pediatric
 - Hypothalamic glioma
 - Craniopharyngioma
- Adult
 - Pituitary adenoma
 - Meningioma
 - Craniopharyngioma
 - Aneurysm

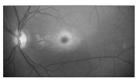

Retrochiasmal lesions

- Hemianopic scotoma
- Grossly incongruous field defects
- Small afferent defect
- Children: neoplasm > vascular > trauma
- Adults: vascular > neoplasm > trauma

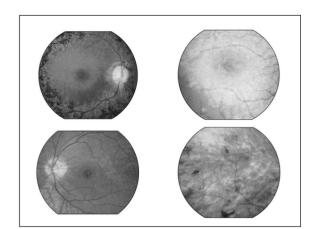
Retrogeniculate lesions

- Normal pupils, nerves unless perinatal
- Superior hemianopia: temporal lobe
- Inferior hemianopia: parietal lobe
- More posterior, more congruity

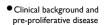



Select Neuro-ophthalmic manifestations of systemic diseases

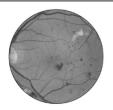
Cherry red spots

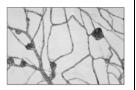

- Tay Sachs & Sandoff's
- Niemann Pick type A
- Metachromatic leukodystrophy
- Sialidosis
- Farber disease

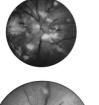
Retinal pigmentary degeneration

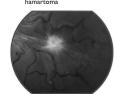

- Mucopolysaccharidoses, Gaucher's, Refsum,
- Neuronal ceroid lipofuscinosis, cystinuria
- Abetalipoproteinemia, Kearns-Sayre
- Hallervorden Spatz, Spinocerebellar ataxias
- Usher, Cockayne

Optic atrophy

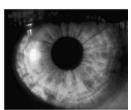

- Krabbe, Metachromatic leukodystrophy
- Adrenoleukodystrophy, Alexander
- Spinocerebellar ataxia type I
- Friedreich's ataxia, Canavan's,
- Pelizaeus-Merzbacher, Alper's


Ocular manifestions of diabetes


- Diabetic papillitis
- Neovascular glaucoma
- Cataract

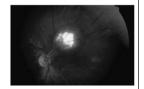

Ocular manifestations of hypertension

- Narrowed arterioles
- ullet Hypertensive retinopathy
- Hypertensive choroidopathy
- Hypertensive optic neuropathy



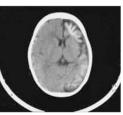
Neurofibromatosis

- Dominant with complete penetrance and variable expressivity
- Skin, brain, eye, bone, visceral
- Ocular signs: Lisch nodules, optic nerve glioma, choroidal hamartoma



Tuberous sclerosis

- Hamartomas: skin, kidney, eye, brain, heart
- Dominant and new mutations
- Symptoms: seizures, MR, facial angiofibromas, hydrocephalus
- Cortical hamartoma = tuber
- Retinal astrocytic
 hamartoma



Sturge-Weber syndrome

- Port wine stain
- Glaucoma
- Leptomeningeal angioma and seizures

Summary

- Visual loss can be understood when knowledge of neuropathophysiology is combined with knowledge of ocular embryology and anatomy
- The pattern of visual loss can localize and identify neuropathologic disease
- The number of systemic diseases having neuro-ophthalmic manifestation is legion