## The Physical and Biological Basis of Radiation Therapy



David J. Brenner, PhD, DSc Center for Radiological Research Department of Radiation Oncology Columbia University Medical Center djb3@columbia.edu

## Wilhelm Conrad Roëntgen

Discovered X rays in 1895



X rays were immediately big news at Columbia



"The College of Physicians and Surgeons is using x-rays to reflect diagrams directly on to the students' brains, making a more enduring impression than the normal method of learning"

New York Morning Journal, 1896







## Who gets radiotherapy?

Half of all RT patients are treated with curative intent

## Who gets radiotherapy?

Half of all RT patients treated with curative intent are cured





## External-beam radiotherapy: 1951













#### By late 1903, the first treatment of cervical cancer with radium was reported from New York

### Medical Record

A Weekly Journal of Medicine and Surgery

Vol. 64, No. 16. Whole No. 1719.

#### \$5.00 Per Annum. Single Copies, 10c. NEW YORK, OCTOBER 17, 1903.

**Opriginal Articles.** RADIUM: WITH A PRELIMINARY NOTE OG RADIUM ATYS IN THE TREATMENT OF CARDENT ACCEAVES, AD. **WINGLARET A CLEAVES, ND. WINGLARET A CLEAVES, ND.** 









| _ | Radiation-induced DNA Damage         |
|---|--------------------------------------|
|   | (a) Intact DNA                       |
|   | (b) Break in a single strand         |
|   | (c) Two strand breaks far apart      |
|   | (d) 2 breaks close together opposite |









Loss of tumor control as a result of increasing overall treatment time

- **2% per day for head and neck tumors**
- 1% per day for cervix, bladder cancers











- Half of them treated with radiotherapy
- Radiation therapy uses both physics biology to maximize the differential between tumor control and side effects

## Clinical Principles of Radiation Therapy

Peter B. Schiff, M.D., Ph.D. Department of Radiation Oncology Columbia University Medical Center

## **Targeted Therapy in Oncology**

- Surgical Oncology
  - Minimal invasive techniques
- Medical Oncology
  - Tumor specific biological targets
- Radiation Oncology
  - IMRT
  - Brachytherapy
  - Protons
  - IGRT



- Primary Radiation Therapy (Radiosurgery)
- Combing RT and Surgery
- Chemo/RT
  - Ca Esophagus
  - EGFR, monoclonal antibody cetuximab + RT for H&N Ca
- 3D-CRT Treatment of Localized CaP ± AD

IGRT

## **Clinical Principles of Radiation Therapy**

**Primary Radiation Therapy** 







## **Combining Radiation Therapy and Surgery**

**Pre-Operative vs Post-Operative** Radiation Therapy

# Pre-Operative vs. Post-Operative Radiation Therapy

Pre-operative irradiation may:

- Increase tumor's resectability
- Eliminate potential seeding of tumor during surgery
- Destroy microscopic foci of tumor that may extend beyond the surgical margins of resection
- Treat a relatively well-oxygenated tumor that may be more radiosensitive
- Allow a smaller treatment field because the operative bed has not been contaminated
- Decrease complications that may be associated with post-operative irradiation

# Pre-Operative vs. Post-Operative Radiation Therapy

Disadvantages of pre-operative irradiation include:

- Inability to select patients on the basis of anatomical extent of disease
- Inability to tailor the irradiation to high-risk sites following the surgical procedure
- Delay primary treatment, which is surgery in most cases
- Increase incidence of post-operative complications associated primarily with wound healing
- Limitation of radiation total dose by the planned surgery
- Pathological downstaging, which may influence selection of adjuvant therapy

## Pre-Operative vs. Post-Operative Radiation Therapy

Advantages of post-operative irradiation include:

- Extent of disease is known at the time of irradiation, and treatment can be individually tailored
- Operative margins may be more easily defined
- Operative wound healing will be intact and the likelihood of surgical complications less
- Tenuous surgical procedures such as GI anastomoses and ileal conduits can be done in a nonirradiated field
- Potential for unnecessary irradiation with some patients is reduced

## Pre-Operative vs. Post-Operative Radiation Therapy

Disadvantages of post-operative irradiation include:

- Delivery of necessary irradiation may be delayed by poor wound healing or by surgical complications
- Tumor may be poorly oxygenated following disruption of blood supply and less sensitive to external beam irradiation
- Irradiation would have no effect on dissemination of tumor at the time of surgical manipulation
- Volume of normal tissue requiring irradiation may be greater after surgery
- Operative procedure may fix certain critical organs in the irradiated field, resulting in increased risk of injury to such structures as the small bowel

## **Clinical Principles of Radiation Therapy**

Radiation Therapy and Chemotherapy

#### MODES THROUGH WHICH COADMINISTRATION OF CYTOTOXIC AGENTS (INCLUDING RADIATION) MAY RESULT IN AN INCREASED THERAPEUTIC RATION

Steel and Peckham, Int. J. Radiat. Oncol. Biol. Phys. 5:85, 1979

- Enhancement of the tumor response compared to that of normal tissue
- Normal-tissue toxicity independence
- Spatial cooperation (where disease at one anatomical site that is insensitive to one agent is controlled by the second agent)
- Normal tissue protection without concomitant protection of tumor cells



### POTENTIAL ADVANTAGES AND DISADVANTAGES OF CHEMORADIATION

Advantages:

- Concurrent treatment may start soon after surgery
- Possible supra-additive effect on local tumor control
- Avoids treatment break between chemotherapy cycles associated with "sandwich" approach
- Shortens overall length of treatment program

#### POTENTIAL ADVANTAGES AND DISADVANTAGES OF CHEMORADIATION (cont)

#### **Disadvantages:**

- Greater acute myelosuppression
- Increased acute skin reaction
- Acute side effects may result in delays or dose reductions of chemotherapy
- Increase risk of subacute side effects, such as pneumonitis
- Increase risk of chronic side effects, such as cardiotoxicity
- Worsened cosmetic outcome

Combined Chemotherapy and Radiotherapy Compared with Radiotherapy Alone in Patients with Cancer of the Esophagus

> RTOG NEJM 326:1593-1598, 1992

#### Combined Chemotherapy and Radiotherapy Compared with Radiotherapy Alone in Patients with Cancer of the Esophagus

- Combination group: 4 cycles of combined 5-FU (1000 mg/m<sup>2</sup>, for four days) and cisplatin (75 mg/m<sup>2</sup>, day 1) plus RT (50 Gy)
- Radiation only group: 64 Gy

Combined Chemotherapy and Radiotherapy Compared with Radiotherapy Alone in Patients with Cancer of the Esophagus

#### Side Effects

Combination treatment group

- 1 treatment related death
- more severe side effects (44% vs. 25%)
- life-threatening side effects (20% vs. 3%)









**Treatment of Localized Prostate Cancer with Radiation Therapy** 

### Combined Modality Treatment with AD In Selected Patients



#### **Treatment Options**

- Radiation therapy ± hormonal intervention
- Surgery ± hormonal intervention
- Hormonal intervention only
- Observation
- Other local therapies

## **Organ Confined Prostate Cancer**

### **Radiation Therapy**

- 3D-conformal radiation therapy (3D-CRT)
- Brachytherapy
- Combination of 3D conformal radiation therapy and brachytherapy



### **Columbia Biologic Classification of Clinically Localized Prostate Cancer**

| Class | Gleason          | PSA                          | 3-yr BDF                     | S 3-yr BDFS (95% CI)                                            |  |
|-------|------------------|------------------------------|------------------------------|-----------------------------------------------------------------|--|
| 1     | 2-6<br>7         | 0-4<br>0-4                   | 100.0<br>80.0                | 94.7 (67.5, 99.2)                                               |  |
| 2     | 2-6<br>7<br>8-10 | 4-15<br>15-50<br>4-15<br>0-4 | 58.4<br>50.6<br>48.5<br>50.0 | 54.8 (43.4, 64.8)                                               |  |
| 3     | 2-6<br>7<br>8-10 | > 50<br>15-50<br>4-15        | 20.0<br>25.2<br>18.4         | 22.7 (8.8, 40.4)                                                |  |
| 4     | 7<br>8-10        | > 50<br>15-50<br>> 50        | 0.0<br>7.0<br>0.0            | 4.6 (0.3, 19.6)                                                 |  |
|       |                  |                              |                              | Columbia University, <i>Urology</i><br><u>51</u> :265-270, 1998 |  |



| 6-Month AD + 3D-CRT vs RT Alone for<br>Patients Localized CaP<br>Harvard, JAMA 292:821-827, 2004 |                                             |                                                             |  |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|--|--|--|--|
|                                                                                                  | % 5-Year<br>Overall<br>Survival<br>P = 0.04 | % 5-Year<br>Survival<br>Without<br>Progression<br>P = 0.002 |  |  |  |  |
| 3D-CRT + AD                                                                                      | 90                                          | 80                                                          |  |  |  |  |
| 3D-CRT                                                                                           | 78                                          | 60                                                          |  |  |  |  |

**Clinical Principles of Radiation Therapy** 

## Image-Guided Radiation Therapy

## IGRT

## IGRT

- Medical professional teams working together
- Availability of new imaging modalities of tumors and normal tissues (CT/PET, MRI, MRS, USTT)
  - Anatomy now being fused with biologic function.
- Adaptive Radiotherapy (gating, organ motion, use of EPIDs, etc).
- CT/MRI virtual simulation



- CyberKnife (linear accelerator on robotic arm)
- Trilogy (linear accelerator with minimultileaf collimators and imaging arms)
- TomoTherapy (CT-like unit with linear accelerator)
- Protons
- Carbon ions









#### Cone Beam KV CT

#### Elekta Synergy

Same Gantry Coupled to delivery device Volume acquisition

5-10 min for image guidance 1-2 cGy per scan





Varian Trilogy















## **Dose Sculpting & Imaging**

- New imaging modalities combined with IMRT (or brachytherapy) open the way to modulating dose within diseased organs
- Success is dependent not only to the ability of IMRT (or brachytherapy) to modulate dose but also on the quality of imaging modalities





## **Clinical Principles of Radiation Therapy**

Peter B. Schiff, M.D., Ph.D. Department of Radiation Oncology Columbia University Medical Center