George Raptis, M.D., M.B.A

Division of Medical Oncology & Hematology College of Physicians & Surgeons Columbia University

BREAST CANCER Epidemiology

- Commonest cancer in women
- About 235,000 new cases/year in United States
- About 45,000 deaths/year

BREAST CANCER

Epidemiology

- Incidence high in U.S., Canada,

Europe, Australia

- Incidence low in Japan, China,

Africa

- Migration studies indicate an environmental factor(s)

BREAST CANCER

Epidemiology Risk *increased* with:

- 1. Early age first menstrual cycle (menarche < age 12)
- 2. Late age last menstrual cycle (menopause > age 55)
- 3. First pregnancy after age 30

Epidemiology Risk *increased* with: 4. Prolonged use of post menopausal estrogen replacement therapy

5. Obesity - postmenopausal

BREAST CANCER

Epidemiology Risk *decreased* with:

- 1. Late age first menstrual cycle (menarche > age 14)
- 2. Early age last menstrual cycle (menopause < age 45)
- 3. First pregnancy before age 20
- 4. Breast feeding > 16 months

BREAST CANCER

Epidemiology Risk *increased* with: Prolonged used of OCPs / HRT Daily alcohol intake

- increased estradiol levels
- other mechanisms – effects on folate

BREAST CANCER

Epidemiology Risk *increased* with:

Family history breast cancer, especially first degree relatives (mother, sister)

Susceptibility to Breast Cancer	
Gene	Contribution to Hereditary Breast Cancer
BRCA1	20%-40%
BRCA2	10%-30%
TP53	<1%
PTEN	<1%
Undiscovered genes	30%-70%

Epidemiology Risk *increased* with: Exposure to Ionizing Radiation 1. Fluoroscopy for monitoring TB therapy in 1940's

- 2. Atomic bombings 1945
- 3. Radiation therapy for Hodgkins disease

BREAST CANCER

Epidemiology Risk *increased* with: Breast biopsy showing 1. Atypical ductal hyperplasia 2. Lobular carcinoma in situ 3. Ductal carcinoma in situ

BREAST CANCER

Pathology

- 1. Description of: i. Histological type
 - ii. Size of primary
 - iii. Axillary nodal metastases
- 2. Hormone receptors
- 3. Over expression her-2/neu

Axillary Dissection

Complications

1. Dysesthesiae and paresthesiae in axillary skin and medial upper arm

- 2. Arm/hand edema; celulitis
- 3. Limited shoulder mobility

BREAST CANCER Pathology Hormone receptors - steroid binding proteins 1. Estrogen receptors 2. Progesterone receptors

BREAST CANCER

Pathology

Hormone receptors

- 1. Measured by immunohistochemical test
- 2. Expressed as percentage positive cells
- 3. Over 10% reported as a positive test

BREAST CANCER

Pathology

Hormone receptors

- 1. Prognostic factor
- Improved if receptors present
- 2. Predictive factor
 - If receptors present, hormonal therapy may be effective

Pathology Her-2/Neu

1. Prognostic factor

expressed

2. Predictive factor

 If her-2/neu over expressed, may respond to trastuzumab

MANIFESTATIONS

Local tumor growth i. Changes detectable on imaging studies (mammography, sonography, MRI) ii. Lump found by patient iii. Lump found by physician

Diagnostic Methods

- Radiologic
 - Mammography
 - Sonography
 - MRI
- Histologic
 - FNA/core biopsy
 - Stereotactic biopsy
 - Excisional biopsy

MANIFESTATIONS

Mechanisms of spread

i. Direct extension

- skin, chest wall

ii. Lymphatic

- axillary, other

iii. Hematogenous

- skeleton, lungs, liver, CNS, skin, LN, anywhere

BREAST CANCER

TREATMENT

- 1. Surgery
- 2. Radiation therapy
- 3. Medical therapy
 - (Pharmaceuticals)

BREAST CANCER TREATMENT GOALS

 Control primary lesion in breast
 Control systemic micrometastases

TREATMENT PRIMARY LESION

 Surgery alone (total mastectomy)
 Limited surgery (lumpectomy) and radiation therapy

Breast Cancer: Primary Surgery Options / Outcomes

- Contraindications to MRM:
 - Multifocal / multicentric disease
 - Large lesion relative to breast: poor cosmetic outcome
 - Radiation therapy issues:
 - Active collagen vascular disorder
 - Logistical issues

RISK OF SYSTEMIC METASTASES

- 1. Lymph node metastases
- 2. Size primary lesion
- 3. Degree differentiation
- 4. Hormone receptor status
- 5. Her-2/neu expression

SYSTEMIC ADJUVANT THERAPY 1. All axillary node positive cases 2. Node negative at significant risk

Hormonally Based Therapy

Reduce estrogen action

- 1. Block with antagonist
 - "selective estrogen receptor modulator"
- 2. Reduce production
 - pre-menopausal
 - post-menopausal

- Tumor ER concentrations higher than in premenopausal patients
 - Increase with age

Rationale for Aromatase Inhibitors for Breast Cancer Treatment

- Selective inhibition of all estrogen biosynthesis
- No estrogenic effects (compared with antiestrogens, tamoxifen)
- Different mode of action from antiestrogens ie non- cross resistant with tamoxifen
- Few side effects

HER2 Protein Overexpression Associated with Poor Prognosis and Shortened Survival

- Approximately 25% of breast cancers are HER2positive¹
- In retrospective studies, HER2 was found to be associated with⁶⁻⁹
 - Shortened survival
 More rapid tumor
 - progression – Increased relapse rate;
 - shorter time to relapse - Poor responses to
 - standard therapies

Trastuzumab (Herceptin): Humanized Anti-HER2 Antibody

Targets HER2
 oncoprotein, which
 occurs in approximately
 25% of patients with
 breast cancer¹
 High affinity (Kd = 5 nM)

and specificity \$25% human, 5% murine

Less immunogenicity

 Increased recruitment of immune effector cells

Immune errector cells

