Principles of Radiation Therapy

Peter B. Schiff, M.D., Ph.D. Department of Radiation Oncology Columbia University College of Physicians & Surgeons

May 4, 2007

Targeted Therapy in Oncology

- Surgical Oncology
 - Minimal invasive techniques
- Medical Oncology
 - Tumor specific biological targets
- Radiation Oncology
 - IMRT
 - Brachytherapy
 - Protons
 - IGRT

TOPICS

- Primary Radiation Therapy (Radiosurgery)
- Combing RT and Surgery
- Chemo/RT
 - Ca Esophagus
 - EGFR, monoclonal antibody cetuximab + RT for H&N Ca
- 3D-CRT Treatment of Localized CaP \pm AD
- IGRT

Primary Radiation Therapy

Combining Radiation Therapy and Surgery

Pre-Operative vs Post-Operative Radiation Therapy

Pre-Operative vs. Post-Operative Radiation Therapy

Pre-operative irradiation may:

- Increase tumor's resectability
- Eliminate potential seeding of tumor during surgery
- Destroy microscopic foci of tumor that may extend beyond the surgical margins of resection
- Treat a relatively well-oxygenated tumor that may be more radiosensitive
- Allow a smaller treatment field because the operative bed has not been contaminated
- Decrease complications that may be associated with post-operative irradiation

Disadvantages of pre-operative irradiation include:

- Inability to select patients on the basis of anatomical extent of disease
- Inability to tailor the irradiation to high-risk sites following the surgical procedure
- Delay primary treatment, which is surgery in most cases
- Increase incidence of post-operative complications associated primarily with wound healing
- Limitation of radiation total dose by the planned surgery
- Pathological downstaging, which may influence selection of adjuvant therapy

Pre-Operative vs. Post-Operative Radiation Therapy

Advantages of post-operative irradiation include:

- Extent of disease is known at the time of irradiation, and treatment can be individually tailored
- Operative margins may be more easily defined
- Operative wound healing will be intact and the likelihood of surgical complications less
- Tenuous surgical procedures such as GI anastomoses and ileal conduits can be done in a nonirradiated field
- Potential for unnecessary irradiation with some patients is reduced

Principles of Radiation Therapy

Radiation Therapy and Chemotherapy

DESCRIPTION OF THE PROPERTIES OF CHEMORADIATION DESCRIPTION OF CHEMORADIATION Advantages: Concurrent treatment may start soon after surgery Possible supra-additive effect on local tumor control Possible supra-additive effect on local tumor control Avoids treatment break between chemotherapy cycles associated with "sandwich" approach Shortens overall length of treatment program

POTENTIAL ADVANTAGES AND DISADVANTAGES OF CHEMORADIATION (cont)

Disadvantages:

- Greater acute myelosuppression
- Increased acute skin reaction
- Acute side effects may result in delays or dose reductions of chemotherapy
- Increase risk of subacute side effects, such as pneumonitis
- Increase risk of chronic side effects, such as cardiotoxicity
- Worsened cosmetic outcome

Combined Chemotherapy and Radiotherapy Compared with Radiotherapy Alone in Patients with Cancer of the Esophagus

- Combination group: 4 cycles of combined 5-FU (1000 mg/m², for four days) and cisplatin (75 mg/m², day 1) plus RT (50 Gy)
- Radiation only group: 64 Gy

Side Effects

Combination treatment group

- 1 treatment related death
- more severe side effects (44% vs. 25%)
- life-threatening side effects (20% vs. 3%)

Principles of Radiation Therapy

Treatment of Localized Prostate Cancer with Radiation Therapy

Combined Modality Treatment with AD In Selected Patients

Treatment Options

- Radiation therapy ± hormonal intervention
- Surgery ± hormonal intervention
- Hormonal intervention only
- Observation
- Other local therapies

Organ Confined Prostate Cancer

Radiation Therapy

- 3D-conformal radiation therapy (3D-CRT)
- Brachytherapy
- Combination of 3D conformal radiation therapy and brachytherapy

	Columbia Biologic Classification of Clinically Localized Prostate Cancer					
Class	Gleason	PSA	3-yr BDFS	3-yr BDFS (95% CI)		
1	2-6 7	0-4 0-4	100.0 80.0	94.7 (67.5, 99.2)		
2	2-6 7 8-10	4-15 15-50 4-15 0-4	58.4 50.6 48.5 50.0	54.8 (43.4, 64.8)		
3	2-6 7 8-10	> 50 15-50 4-15	20.0 25.2 18.4	22.7 (8.8, 40.4)		
4	7 8-10	> 50 15-50 > 50	0.0 7.0 0.0	4.6 (0.3, 19.6)		
				lumbia University, <i>Urology</i> 265-270, 1998		

6-Month AD + 3D-CRT vs RT Alone for Patients Localized CaP Harvard, JAMA 292:821-827, 2004

• 206 patients randomized to 3D-CRT (70 Gy) alone (n=104) or in combination with 6 months AD (n=102)

Eligible patients included those with PSA ≥ 10 ng/mL, a Gleason score ≥ 7, or radiographic evidence of extracapsular disease

Patients Localized CaP Harvard, JAMA 292:821-827, 2004					
	% 5-Year	% 5-Year			
	Overall Survival	Survival			
	P = 0.04	Without			
		Progression			
		P = 0.002			
3D-CRT + AD	90	80			
3D-CRT	78	60			

IGRT

New paradigms and other considerations

- Medical professional teams working together
- Availability of new imaging modalities of tumors and normal tissues (CT/PET, MRI, MRS, USTT, etc). Anatomy now being fused with biologic function.
- Adaptive Radiotherapy (gating, organ motion, use of EPIDs, etc).
- CT/MRI virtual simulation

