

Progression of neoplasia of the Colon and rectum

Polyposis and Colon Cancer Predisposition Syndromes

- Familial Adenomatous Polyposis, Hereditary Nonpolyposis Syndrome, Juvenile Polyposis
 - Genetic analysis of these syndromes has identified their genetic causes and led to understanding of sporadic colorectal cancer

Familial Adenomatous Polyposis

- Autosomal dominant
- Multiple benign adenomas of the colon and rectum
- Increased risk of colon cancer
- Patients develop adenomas in 2nd and 3rd decade
- Inherited deletion of chromosome 5q

Adenomatous Polyposis Coli

Hereditary Nonpolyposis Colon Cancer Syndrome

- At least three affected family members in two generations
- Autosomal Dominant
- One member diagnosed under age 50
- Right sided colon cancer most common
- Also associated with endometrial carcinoma

Microsatellite DNA

- Repeats of simple single, double, triple or tetra nucleotides
- Commonly $(A)_n$ or $(CA)_n/(GT)_n$ repeats
- >10⁴-10⁵ found throughout genome

Linkage analysis in HNPCC Families

- Log of the Odds (LOD) ratio of greater than 5 seen in HNPCC pedigrees
- Linkage to 2p16 and 3p24
 - Inheritance of phenotype was linked with specific allele

Microsatellite Instability and HNPCC

- Simple repeated sequences such as CA_n and A_n are mutated in tumors from HNPCC patients
- Mutations typically delete or insert repeat sequence
- Point mutations occur at high frequency

HNPCC Tumors Have Mutations in Microsatellite DNA

Mismatch repair and Microsatellite Instability

- Resembles mutator phenotype seen in e. coli and s. cerevesiae that are deficient in mismatch repair
- Cells with microsatellite instability also have increased rate of point mutations
- Cells with microsatellite instability have no functional mismatch repair

E. Coli Mismatch Repair

- E coli: MutS, MutL and MutH
- MutS binds mismatch
- MutL binds MutS and DNA repair machinary
- MutH recognizes daughter strand
- Mismatches can be repaired with purified factors in a cell free system

Mismatch Repair Defects in Yeast Cause Microsatellite Mutations

TABLE 1 Rates of alteration in lengths of poly(GT) tracts in yeast strains mutations affecting DNA mismatch repair				
Strain	Relevant genotype	Tract location	Rate of tract alterations	Rate relative to wild type
MS85	Wild type	pSH31	3.1×10^{-6}	1
MS57	pms1	pSH31	2.4×10^{-3}	774
MS90	mih1	pSH31	1.7×10^{-3}	548
MS94	msh2	pSH31	1.1×10 ⁻³	355
MS97	pms1 mlh1	pSH31	1.7×10^{-3}	548
MS86	pol2	pSH31	2.2×10^{-6}	0.7

Mutations of hMSH2 occur in HNPCC

Juvenile Polyposis Syndrome

- Onset of hamartomatous polyps in first decade
- Increased risk of colon cancer
- Autosomal dominant
- Associated with germline mutations of SMAD4 and BMP 1A receptor

<text>

Predictions of the Nowell's Hypothesis

- Mutations of oncogenes are rare events
- Solid tumors require multiple genetic alterations within a single clone
- Multiple waves of mutation require increased mutation rate

K-RAS Mutations

•Mutated in 50% of sporadic colorectal cancer

•Mutated in 50% of sporadic adenomas

•Mutations are somatic

•Mutations affect only one allele

- •Mutations are dominant and oncogenic
- •Mutations are not seen in small adenomas or aberrant crypts
- •Mutations inactivate GTPase activity of K-RAS

p53 Mutations

- Mutations inactivate both alleles.
- Mutations inactivate DNA-binding domain.
- Mutations occur in 50-80% of Carcinomas
- No mutations occur in Adenomas
- Mutations are somatic

Genomic Instability in Colon Cancer

- APC inactivation causes a mitotic checkpoint defect
- p53 mutations cause G1 and G2 checkpoint defect
- MMR defects associated with diploid karyotype and 1000 fold increase in mutation rate
- Cause of aneuploidy remains poorly understood but likely to involve mitotic checkpoint pathways

Comparison of MMR deficient and Aneuploid Tumors: The TGF-β pathway

- 100% inactivation of TGFβ type II receptor in MMR-deficient cases.
- Typically, frame shift mutation in A_{10} tract in open reading frame
- Not mutated in aneuploid tumors.
- Chromosome 18q lost in 80% of aneuploid cases.
- Both alleles altered for SMAD4 and SMAD2 in substantial proportion of cases.

Comparison of WNT pathway Alterations (MMR + v. MMR -)

- β-catenin mutations more common than APC mutations in MMR-deficient tumors
- APC mutation occur in MMR proficient tumors
- Mutations are mutually exclusive
- WNT pathway is targeted in all colorectal cancers

Therefore:

- Different genetic instabilities reveal distinct "hot-spots" within different genes on a pathway.
- The pathways are the target
- Multiple pathways are activated in an invasive carcinoma

