Lymphoma Disease Management

Overview and Principles of Therapy

Owen A. O’Connor, M.D., Ph.D.
Director, Lymphoid Development and Malignancy Program
Herbert Irving Comprehensive Cancer Center
Chief, Lymphoma Service
The New York Presbyterian Hospital
Columbia University Medical Center

Lymphoma Overview and Principles of Therapy

• Non-Hodgkin’s Lymphoma
 – Epidemiology
 – Classification/Staging
 – Indolent Lymphoma
 – Aggressive Lymphoma
• Hodgkin’s Disease – Not Today
• New Approaches to Therapy – Not Today

What is Lymphoma?

• Non-Hodgkin’s Lymphoma
 – Typically presents with a clonal expansion of lymphocytes in lymph nodes
 – Different lymphomas arise from B, T, and NK cells
 – 85% of all lymphomas in the US are derived from B cells
 – Estimated 55,000 new cases
 – Indolent lymphomas account for approximately 40% of new diagnoses
 – Aggressive lymphomas account for 60% of presentations
• Hodgkin’s Disease
 – Lymph nodes are involved with the characteristic Reed-Sternberg cells
 – Evidence suggest origin from a post germinal center B cell
 – Estimated 7,500 new cases
 – Peak of incidence in the 3rd and 4th decades of life
 – Vast majority of patients can be cured with current therapy

The Ontogeny of Lymphoid Neoplasms’ is Complex and Heterogeneous

REAL Classification of NHL Subtypes
Most Lymphomas Are Relatively Rare

WHO/REAL Classification of Lymphoma
Characteristics of the 13 Most Common Entities

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Frequency (%)</th>
<th>Immunophenotype</th>
<th>Molecular Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLBCL</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCL</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLL/CLL</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALT</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediastinal LCL</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALCL</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL (T/B)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkitt-like</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MZL (Nodal)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLL, PL</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, 16%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Categorizing the non-Hodgkin's Lymphomas

Aggressive Lymphoma
- Diffuse large B-cell NHL
- Peripheral T-cell NHL
- Burkitts lymphoma
- Lymphoblastic lymphoma
- Mantle cell lymphoma
- Approach with Curative Intent
- PBSCT Can Salvage Relapse
- Fatal if not Cured

Indolent Lymphoma
- Chronic lymphocytic leukemia (CLL)
- Small lymphocytic lymphoma (SLL)
- Follicular lymphoma
- Marginal Zone lymphoma
- Nodal
- Extranodal (MALTS)
- Primary splenic
- Typically Incurable
- Possible Cure for Stage 1A Disease (RT or Chemo-RT)
- Chronic Disease Manageable
- Monoclonal antibodies changing natural history

Clinical Prognostic Factors Tell Only Part of the Story

International Prognostic Index (IPI)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Age >60 years</th>
<th>PS ≥ 2</th>
<th>LDH > Normal</th>
<th>Extranodal sites ≥ 2</th>
<th>Stage III-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low/Intermediate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>High/Intermediate</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>High</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

5-year DFS (%) 5-year OS (%)

- Low: 70, 73
- Low/Intermediate: 50, 51
- High/Intermediate: 40, 43
- High: 40, 26

Prognostic Subgroups in *de novo* DLBCL Based on Ontogeny

DNA microarray analysis can be used to predict survival after chemotherapy.

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin's Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin's Disease
- New Approaches to Therapy

International Prognostic Index Predicts Overall Survival – What is Biological Basis?

U.S. Cancer Mortality, All Ages
Non-Hodgkin’s Lymphoma: SEER Incidence by Age
1973-1975 vs 1993-1995; All Races, Male

Age at Diagnosis (years)

Rate per 100,000

140
120
100
80
60
40
20
0

1973-1975
1993-1995

0-4
5-9
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
>85

WORLD HEALTH ORGANIZATION (WHO) T-CELL LYMPHOMA CLASSIFICATION
A Whole Different Lecture

Precursor T/NK Neoplasms
- Precursor T lymphoblastic leukemia/lymphoma
- Blastic NK lymphoma

Peripheral T/NK Neoplasms
- Predominantly leukemic/disseminated
 - T-cell prolymphocytic leukemia
 - T-cell large granular lymphocytic
 - NK/T-cell leukemia/lymphoma
 - Adult T-cell leukemia/lymphoma
- Predominantly nodal
 - Angioimmunoblastic T-cell lymphoma
 - Anaplastic large T- and NK-cell lymphoma
- (Unspecified)

Predominantly Extrahodinal
- Mycosis Fungoides (CTCL)
- Sezary syndrome
- Primary cutaneous CD30+ disorders
- Anaplastic large cell lymphoma
- Lymphomatoid papulosus
- Subcutaneous panniculitis T-cell
- NK/T-cell lymphoma
- Enteropathy-type intestinal lymphoma
- Hepatosplenic T-cell lymphoma
- Extrahodinal peripheral T/NK-cell lymphoma
- (Unspecified)

Age Distribution of Malignant Lymphoma
All Histologic Diagnoses

Data from the Royal Marsden Hospital 1962-1972.

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin’s Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin’s Disease
- New Approaches to Therapy

Clinical Staging of Lymphoma
Modified Ann Arbor Staging

- Clinical Stages
 - I: Single lymph node group
 - II: Multiple lymph node groups on one side of the diaphragm
 - III: Lymph nodes on both sides of the diaphragm
 - IV: Extra-nodal disease
- Modifiers
 - B: Fevers, night sweats, weight loss
 - A: Absence of B symptoms
 - X: Mass > 10 cm or 1/3 thoracic diameter
 - E: Extra-nodal extension of disease

B Cell Development

Clinical Staging of Lymphoma
Modified Ann Arbor Staging
Lymphoma Overview and Principles of Therapy

- Non-Hodgkin’s Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin’s Disease
- New Approaches to Therapy

Follicular Lymphoma

H&E

CD10

CD3

CD 10+, CD 19+, CD 20+, CD 22+, LCA+, κ/λ clonal excess

CD 3 -, CD 5 -, CD 15 -, CD 30 -

CLINICAL MANAGEMENT OF FOLLICULAR LYMPHOMA
In Patients With An Indication for Therapy

Indolent NHL In Need of Treatment

<table>
<thead>
<tr>
<th>Chemotherapy</th>
<th>Biological</th>
<th>Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkylator Rx</td>
<td>Specific</td>
<td>Autologous</td>
</tr>
<tr>
<td>COP/CHOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorambucil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purine Analog Rx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fludarabine</td>
<td></td>
<td>Autologous</td>
</tr>
<tr>
<td>Flu / CyFlu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigational</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FL: Reproducibility of Grading
Berard Criteria

Grade 1
Small Cleaved

Grade 2
Mixed

Grade 3
Large Cell

Large Cells
Per High Power Field
<5
5-15
>15

Expert Concordance
72%
61%
60%

Indolent B-Cell Lymphoma
Survival by Era

1987-1996 (N=688)
1976-1987 (N=513)
1960-1976 (N=195)

- Molecular
 - t(14;18) translocation
 - BCL2 is overexpressed
 - BCL2 is anti-apoptotic
- Clinical
 - Equal number of men and women
 - Uncommon in Blacks and Asians
 - Transformation is common
 - Spontaneous regress occurs in ~30% of cases
- Pathology
 - subtypes: Grades 1, 2, 3

Courtesy of Sandra J. Horning, MD.
Follicular Lymphoma

Histological Transformation (HT)

- Actuarial risk of HT is 25% to 60% at 8 years
- HT results from genetic alteration of a single cell
 - P53 mutation (~50%), translocations of c-myc (~15%) and BCL6 (~10%)
- Prognosis following HT is generally poor

Indolent B Cell Lymphoma

Clinical Management

- **Localized**
 - Observation

- **Advanced**
 - Low Tumor Burden: Therapy
 - High Tumor Burden: Therapy

Gastric MALT Lymphoma

A curable low grade lymphoma

- Strong association with *Helicobacter pylori* infection
 - In 10%-50% of cases, treatment of the infection will result in regression of the lymphoma
 - Remissions may take up to 6 months
- Most patients who fail to respond to antibiotics can be cured with radiation therapy

Disease-Free Survival

- N = 48 patients
- 80% survival at 6 years

Indolent B Cell Lymphoma: Advanced Stage

Principles of Therapy

- Not curable with conventional therapy
- Presents in older patients who may have significant co-morbid conditions complicating therapeutic options
- Observation is appropriate if there are no indications for therapy
- Response duration is generally shorter with each course of therapy
- Enrollment on clinical trials is recommended if feasible
Indolent B Cell Lymphoma: Advanced Stage
Observation in Absence of an Indication for Treatment

- Both prospective randomized and retrospective studies have:
 - No survival disadvantage
 - 3 year median progression to treatment
 - Same rate of histological transformation

TARGETS ON B-CELLS

- Surface proteins can be targeted with:
 - Active immunotherapy
 - Vaccines
 - Passive immunotherapy
 - Unmodified MAbs
 - Conjugated MAbs
 - Radioimmunoconjugates
 - Drugs
 - Toxins
 - Peptides selected for binding
 - Small molecules

Indolent B Cell Lymphoma: Advanced Stage
Clinical Management

Indolent B Cell Lymphoma

- Localized
- Advanced
- Low Tumor Burden
- Advanced
- High Tumor Burden

- Involved/Extended Field Radiation
- Observation
- Therapy

Indolent B Cell Lymphoma: Advanced Stage
Clinical Management with Indication for Therapy

B-Cell Life Cycle
CD20 Tumor Specificity

B1 (CD20) Antigen

- TARGETS ON B-CELLS
- Indolent B Cell Lymphoma: Advanced Stage
- Observation in Absence of an Indication for Treatment
- Localized
- Advanced
- Low Tumor Burden
- Advanced
- High Tumor Burden
- Involved/Extended Field Radiation
- Observation
- Therapy
- B-Cell Life Cycle
- CD20 Tumor Specificity
- B1 (CD20) Antigen
Cytotoxic Mechanisms of Monoclonal Antibodies

- Effector cells/complement
- Apoptosis
- Radiation/radionuclide
- Toxin/drug

Crossfire Enhances Antibody Action

- Naked Antibody
- Radiolabeled Antibody

RITUXIMAB CLINICAL TRIAL SUMMARY LOW GRADE LYMPHOMA

<table>
<thead>
<tr>
<th>Trial Phase</th>
<th>Patient Population</th>
<th>Regimen</th>
<th>RR</th>
<th>RD</th>
<th>TTP (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivotal, Phase III</td>
<td>Low grade NHL, relapsed/refractory</td>
<td>Rituximab 375 mg/m² x 4</td>
<td>48%</td>
<td>6%</td>
<td>11.2</td>
</tr>
<tr>
<td>Phase II</td>
<td>Low grade NHL, new dx or relapsed/refractory</td>
<td>Rituximab 375 mg/m² x 6, CHOP x 6</td>
<td>95%</td>
<td>55%</td>
<td>39.1+</td>
</tr>
</tbody>
</table>

- RR: Response Rate
- ORR: Overall Response Rate
- CR: Complete response
- PR: Partial Response
- RD: Response Duration
- TTP: Time to tumor progression

Rituximab
- Engineered derivative of IDEC-2B8
- Murine antigen binding domain
- Human κ constant region
- Human IgG1 constant region
- Induces apoptosis

CD20 antigen
- Hydrophobic, 35 kD phosphoprotein
- Expressed only on B lineage cells
- Important for cell cycle initiation and differentiation
- Does not shed or rapidly modulate off cell surface

Effect of chimerism
- $t_1/2 = 76$ h after 1st dose
- $t_1/2 = 206$ h after 4th dose
- Activates complement
- Induces antibody dependent cell-mediated cytotoxicity

Ibritumomab tiuxetan
- Murine IDEC-2B8 (parent of rituximab)
- MX-DTPA conjugated to antibody forming strong urea-type bond
- Stable retention of 90Y

Yttrium-90
- $t_1/2 = 64$ hours
- Outpatient administration
- Beta emission
- $X_{eq} = 5$ mm
Iodine I 131 Tositumomab
Mechanism Of Action

- Iodine I 131 tositumomab
 - murine IgG2a anti-CD20 MAb
 - B-cell specific
 - triggers apoptosis
 - antibody-dependent cellular cytotoxicity
- Iodine-131 radionuclide
 - beta emission
 - short pathlength "crossfire" effect (~1mm)
 - gamma emission
 - allows individual dosimetry
- Iodine I 131 tositumomab
 - targeted radiotherapy

Indolent Lymphoma
Continuing Challenges

- Define the optimal use of antibody-based therapy
 - First line
 - In combination with chemotherapy
 - Sequentially with chemotherapy
- Refine the use of high dose therapy to provide maximal benefit
- Develop new targeted therapy based on molecular mechanisms of lymphomagenesis

RITUXIMAB v 90Y-2B8: RESPONSE TO THERAPY
INTERIM ANALYSIS (n=90)

<table>
<thead>
<tr>
<th>Histology</th>
<th>Rituximab N (%)</th>
<th>Ibritumomab N (%)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>20 (43.5)</td>
<td>35 (79.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>CR</td>
<td>3 (7%)</td>
<td>9 (21)</td>
<td>0.057</td>
</tr>
<tr>
<td>PR</td>
<td>17 (37%)</td>
<td>26 (59%)</td>
<td></td>
</tr>
</tbody>
</table>

*Calculated from Cochran-Mantel-Haenszel test over histology type (A/Follicular/Transformed)

Witzig, et al., Blood, 94 (Supplement 1), Abstract 2805

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin’s Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin’s Disease
- New Approaches to Therapy

Overall Survival: Large Cell Histologies

- Anaplastic large cell lymphoma
- Diffuse large B cell lymphoma
- Burkitt-Like
- Peripheral T cell lymphoma

Log rank test: p<0.001

Witzig, et al., Blood, 94 (Supplement 1), Abstract 2805
Three Generations of Chemotherapy for NHL: Apparent Improvement in Outcome

<table>
<thead>
<tr>
<th>DFS: 55-45%</th>
<th>DFS: 50-70%</th>
<th>DFS: 60-75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACOP</td>
<td>ProMACE-MOPP</td>
<td>MACOP-B</td>
</tr>
<tr>
<td>MOPP</td>
<td>M-BACOD</td>
<td>ProMACE-CytaBOM</td>
</tr>
<tr>
<td>COPA-Bleo</td>
<td>COP-BLAM</td>
<td>ProMACE-MOPP 1/8</td>
</tr>
<tr>
<td>CAP-BOP</td>
<td></td>
<td>COP-BLAM III</td>
</tr>
<tr>
<td>COMLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National High Priority Lymphoma Study: Time to Treatment Failure by Randomized Treatment Arm

International Prognostic Index Age-Adjusted (aIPI)

- Prognostic Indicators (PLS)
 - Performance status > 1
 - LDH > 1 x normal
 - Stage III or IV
- Risk Category Factors
 - Low
 - Low-intermediate
 - High-intermediate
 - High

International Prognostic Index

- Prognostic Indicators (APLES)
 - Age > 60 years
 - Performance status > 1
 - LDH > 1 x normal
 - Extranodal sites > 1
 - Stage III or IV
- Risk Category Factors
 - Low 0 or 1
 - Low-intermediate 2
 - High-intermediate 3
 - High 4 or 5

Diffuse Large B Cell Lymphoma
Distinct Forms Revealed by Expression Arrays

- Lymphochip expression array data segregates diffuse large B cell lymphoma into two molecular entities:
 - Germinal center phenotype
 - Activated B cell phenotype
- Molecular subtype is independent of International Prognostic Index risk group
Management of Aggressive NHL

- R-CHOP
 - 55
 - 45
- CR
- Primary Refractory
- Cure
- Relapse
- HDT/ASCT

Parma Trial: Event-free Survival

- % Event-free Survival
- Months from Inclusion

- ABMT (N = 55)
- DHAP (N = 54)

Second Line Therapy for Aggressive NHL

- Ideal second line therapy
 - Provides effective reduction in tumor size
 - Results in minimal non-hematologic toxicity
 - Effectively mobilizes stem cells into the peripheral blood

Aggressive Lymphoma

Second-line Therapy

Therapy for Aggressive NHL Summary

- R-CHOP remains the standard, albeit with suboptimal results, for refractory NHL
- Passive Immunotherapy in aggressive NHL has changed the landscape
- High dose therapy with ASCT is superior to chemotherapy for relapsed and refractory aggressive lymphoma
- A better response to second line therapy correlates with a superior outcome post ASCT
- Based on intention to treat, about 30% of patients are benefited by second-line therapy with high dose chemotherapy consolidation
Therapy for Aggressive NHL

Summary

- Patients with primary refractory disease, both induction failures and those achieving only a PR to first line therapy can benefit from ASCT
- Second-line age-adjusted international prognostic index (saalPI) predicts survival
- Not all patients with relapsed and refractory aggressive NHL are potentially curable with this approach, particularly:
 - relapsed saalPI IV
 - refractory saalPI III/IV

Second-line Therapy of NHL

Avenues for New Directions

- Improved cytoreduction (RICE)
- Improved HDT (TBI-Ifos-Etop)
 - Non-myeloablative alloBMT
- Post remission therapy
 - Cellular therapy
 - Post remission chemotherapy (after transduction of stem cells with drug resistance genes)
- Novel targeted therapy

The Future of Cancer Therapy

Targeting the Molecular Pathways