Lymphoma Disease Management

Overview and Principles of Therapy

Owen A. O'Connor, M.D., Ph.D.

Director, Lymphoid Development and Malignancy Program
Herbert Irving Comprehensive Cancer Center
Chief, Lymphoma Service
The New York Presbyterian Hospital
Columbia University Medical Center

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin's Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin's Disease Not Today
- New Approaches to Therapy Not Today

What is Lymphoma?

Non-Hodgkin's Lymphoma

- Typically presents with a clonal expansion of lymphocytes in lymph nodes
- Different lymphomas arise from B, T, and NK cells
- 85% of all lymphomas in the US are derived from B cells
- Estimated 55,000 new cases
- Indolent lymphomas account for approximately 40% of new diagnoses
- Aggressive lymphomas account for 60% of presentations

Hodgkin's Disease

- Lymph nodes are involved with the characteristic Reed-Sternberg cells
- Evidence suggest origin from a post germinal center B cell
- Estimated 7,500 new cases
- Peak of incidence in the 3rd and 4th decades of life
- Vast majority of patients can be cured with current therapy

Most Lymphomas Are Relatively Rare

WHO/REAL Classification of Lymphoma

Characteristics of the 13 Most Common Entities

Subtype	Frequency (%)	Immunophenotype	Molecular Lesions
DLCL	31	CD20+	BCL2, BCL6, CMYC
FL	22	CD20+, CD10+, CD5-	BCL2
SLL/CLL	6	CD20 weak, CD5+, CD23+	+12, del(13q)
MCL	6	CD20+, CD5+, CD23-	CYCLIN D1
PTCL	6	CD20-, CD3+	Variable
MZL (MALT)	5	CD20+, CD5-, CD23-	BCL10, +3, +18
Mediastinal LCL	2	CD20+	Variable
ALCL	2	CD20-, CD3+, CD30+, CD15-, EMA+	ALK
LL (T/B)	2	T cell CD3+, B cell CD19+	Variable, TCL1-3
Burkitt-like	2	CD20+, CD10-, CD5-	CMYC, BCL2
MZL (Nodal)	1	CD20+, CD10-, CD23-, CD5-	+3, +18
SLL, PL	1	CD20+, clg+, CD5-, CD23-	PAX-5
BL	<1	CD20+, CD10+, CD5-	CMYC
TOTAL	88		

Categorizing the non-Hodgkin's Lymphomas

Aggressive Lymphoma

Indolent Lymphoma

- Diffuse large B-cell NHL
- Peripheral T-cell NHL
- · Burkitts lymphoma
- Lymphoblastic lymphoma
- Mantle cell lymphoma

- Approach with Curative Intent
- PBSCT Can Salvage Relapse
- · Fatal if not Cured

- Chronic lymphocytic leukemia (CLL)
- Small lymphocytic lymphoma (SLL)
- Follicular lymphoma
- Marginal Zone lymphoma
 - Nodal
 - Extranodal (MALTS)
 - Primary splenic
- Typically Incurable
- Possible Cure for Stage 1A Disease (RT or Chemo-RT)
- Chronic Disease Manageable
- Monoclonal antibodies changing natural history

Clinical Prognostic Factors Tell Only Part of the Story

International Prognostic Index (IPI)

Factor	Adverse
Age	>60 years
PS	≥2
LDH	>Normal
Extranodal sites	≥2
Stage	III-IV

	Northar at I		
	I Number of		
	Factors	5 Averair DES	
Piez Greum	Propositi	104	5 vices (0.5 /U/)
Low	0-1	70	73
Low/Intermediate	2	50	51
High/Intermediate	3	49	43
High	4-5	40	26

Age-Adjusted

Factor	Adverse
PS	≥2
LDH	>Normal
Stage	III-IV

Age-Adjusted

9 7			
		5-wear OS	5-46-11-0-6
		/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		0.05 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Pisk Profes	District to the Control of the Contr	7.17 N	(17 A)
Low	0	56	83
Low/Intermediate		44	
Low/intermediate		44	69
		07 TOO TOO TOO TOO TOO TOO TOO TOO TOO TO	20 20 20 20 20 20 20 20 20 20 20 20 20 2
High/Intermediate	9	37	46
ingimite integrate			
High	3	21	32

The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329:987-994

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin's Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin's Disease
- New Approaches to Therapy

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin's Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin's Disease
- New Approaches to Therapy

WORLD HEALTH ORGANIZATION (WHO) T-CELL LYMPHOMA CLASSIFICATION

A Whole Different Lecture

Precursor T/NK Neoplasms

Precursor T lymphoblastic leukemia/lymphoma Blastic NK lymphoma

Peripheral T/NK Neoplasms

Predominantly leukemic/disseminated

T-cell prolymphocytic leukemia T-cell large granular lymphocytic NK/T-cell leukemia/lymphoma Adult T-cell leukemia/lymphoma

Predominantly nodal

Angioimmunoblastic T-cell lymphoma Anaplastic large cell lymphoma Peripheral T-cell lymphoma (Unspecified)

Predominantly Extranodal

Mycosis Fungoides (CTCL)
Sezary syndrome
Primary cutaneous CD30+ disorders
Anaplastic large cell lymphoma
Lymphomatoid papulosis

Subcutaneous panniculitis T-cell

NK/T-cell lymphoma-nasal Enteropathy-type intestinal lymphoma Hepatosplenic T-cell lymphoma (γ,δ) Extranodal peripheral T/NK-cell lymphoma (Unspecified)

Clinical Staging of Lymphoma

Modified Ann Arbor Staging

- Clinical Stages
 - I: Single lymph node group
 - II: Multiple lymph node groups on one side of the diaphragm
 - III: Lymph nodes on both sides of the diaphragm
 - IV: Extra-nodal disease

- Modifiers
 - B: fevers, night sweats, weight loss
 - A: Absence of B symptoms
 - X: Mass > 10 cm or 1/3 thoracic diameter
 - E: Extra-nodal extension of disease

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin's Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin's Disease
- New Approaches to Therapy

FL: Reproducibility of Grading Berard Criteria Grade 1 Grade 2 Grade 3 **Small Cleaved** Mixed Large Cell Large Cells <5 5-15 >15 Per High Power Field **Expert 72%** 61% 60% Concordance

Follicular Lymphoma • Molecular - t(14;18) translocation - BCL2 is overexpressed - BCL2 is anti-apoptotic • Clinical - Equal number of men and women - Uncommon in Blacks and Asians - Transformation is common - Spontaneous regress occurs in ~30% of cases • Pathology - subtypes: Grades 1, 2, 3

Follicular Lymphoma

Histological Transformation (HT)

- Actuarial risk of HT is 25% to 60% at 8 years
- HT results from genetic alteration of a single cell
 - P53 mutation (~50%), translocations of c-myc (~15%) and BCL6 (~10%)
- Prognosis following HT is generally poor

Gastric MALT Lymphoma

A curable low grade lymphoma

- Strong association with Heliobacter pylori infection
 - In 10%-50% of cases, treatment of the infection will result in regression of the lymphoma
 - Remissions may take up to 6 months
- Most patients who fail to respond to antibiotics can be *cured* with radiation therapy

Disease-Free Survival Disease-Free Survival N = 48 patients Months

Indolent B Cell Lymphoma: Advanced Stage Principles of Therapy

- Not curable with conventional therapy
- Presents in older patients who may have significant co-morbid conditions complicating therapeutic options
- Observation is appropriate if there are no indications for therapy
- Response duration is generally shorter with each course of therapy
- Enrollment on clinical trials is recommended if feasible

Indolent B Cell Lymphoma: Advanced Stage

Observation in Absence of an Indication for Treatment

- Both prospective randomized and retrospective studies have:
 - No survival disadvantage
 - 3 year median progression to treatment
 - Same rate of histological transformation

RITUXIMAB CLINICAL TRIAL SUMMARY LOW GRADE LYMPHOMA

Trial Phase (Author)	N	Patient Population	Re	gimen	RR	RD Months	TTP (median) Months
Pivotal, Phase	III 166	Low grade NHL,		nab 375	ORR 48%	11.2	13+
(McLauglin et.	al)	relapsed/refractory mg/m ² x 4	mg/m² x 4		CR 6%		
					PR 42%		
Rituximab/CH0	OP- 40	Low grade NHL, new		nab 375	ORR 95%	39.1+	41.1
Phase II		dx or relapsed/ refractory	mg/m² x 6		CR 55%		
(Czuczman et. al)		,	CHOP x 6		PR 40%		
D.D.	Baananaa	Doto	DD.	Dannan	oo Duration		
RR	Response	Rate	RD	Respon	se Duration		
ORR	Overall Response Rate		TTP	Time to tumor progression			
CR	Complete reponse						
PR	Partial Re	sponse					

lodine I 131 Tositumomab

Mechanism Of Action

- Iodine I 131 tositumomab
 - murine IgG2_a anti-CD20 MAb
 - B-cell specific
 - triggers apoptosis
 - antibody-dependent cellular cytotoxicity
- lodine-131 radioisotope
 - beta emission
 - * short pathlength "crossfire" effect (~1mm)
 - gamma emission
 - * allows individual dosimetry
- Iodine I 131 tositumomab
 - targeted radiotherapy

RITUXIMAB v 90Y-2B8: RESPONSE TO THERAPY

INTERIM ANALYSIS (n=90)

Histology	Rituximab N (%)	Ibritumomab N (%)	p-value*
ORR	20 (43.5)	35 (79.5)	0.001
95% CI	28.1-58.9%	64.2-89.7%	
CR	3 (7%)	9 (21)	0.057
PR	17 (37%)	26 (59%)	

*Calculated from Cochran-Mantel-Haenszel test over histology type (A/Follicular/Transformed)

Witzig, et al., Blood, 94 (Supplement 1), Abstract 2805

Indolent Lymphoma

Continuing Challenges

- Define the optimal use of antibody-based therapy
 - First line
 - In combination with chemotherapy
 - Sequentially with chemotherapy
- Refine the use of high dose therapy to provide maximal benefit
- Develop new targeted therapy based on molecular mechanisms of lymphomagenesis

Lymphoma Overview and Principles of Therapy

- Non-Hodgkin's Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma
- Hodgkin's Disease
- New Approaches to Therapy

Three Generations of Chemotherapy for NHL: Apparent Improvement in Outcome

First Generation	Second Generation	Third Generation
DFS: 35-45%	DFS: 50-70%	DFS: 60-75%
BACOP	ProMACE-MOPP	MACOP-B
MOPP	M-BACOD	ProMACE-CytaBOM
COPA-Bleo	COP-BLAM	ProMACE-MOPP 1/8
CAP-BOP		COP-BLAM III
COMLA		
COPA		
CHOP		

International Prognostic Index

Prognostic Indicators (APLES)

- Age > 60 years
- Performance status > 1
- LDH > 1 x normal
- Extranodal sites > 1
- Stage III or IV

Risk	Category	

Factors

3

- 0 or 1 Low
- Low-intermediate 2
- High-intermediate
- High 4 or 5

Hiddemann. E. J Cancer. 1995; Jagannath et al. J Clin Oncol. 1986; Danieu et al. Cancer Res. 1986; Swan et al. J Clin Oncol. 1989; Coiffier et al. J Clin Oncol. 1991; Shipp et al. N Engl J Med. 1993.

International Prognostic Index Age-Adjusted (aalPI)

Prognostic Indicators (PLS)

- Performance status > 1
- LDH > 1 x normal
- Stage III or IV

Risk Category

Factors

Low

- 0
- Low-intermediate
- 1
- High-intermediate
- 2
- High 3

Shipp et al. N Engl J Med. 1993.

Aggressive Lymphoma Second-line Therapy

Second Line Therapy for Aggressive NHL

- Ideal second line therapy
 - Provides effective reduction in tumor size
 - Results in minimal non-hematologic toxicity
 - Effectively mobilizes stem cells into the peripheral blood

Therapy for Aggressive NHL Summary

- R-CHOP remains the standard, albiet with suboptimal results, for refractory
- Passive Immunotherapy in aggressive NHL has changed the landscape
- High dose therapy with ASCT is superior to chemotherapy for relapsed and refractory aggressive lymphoma
- A better response to second line therapy correlates with a superior outcome post ASCT
- Based on intention to treat, about 30% of patients are benefited by second-line therapy with high dose chemotherapy consolidation

Therapy for Aggressive NHL Summary

- Patients with primary refractory disease, both induction failures and those achieving only a PR to first line therapy can benefit from ASCT
- Second-line age-adjusted international prognostic index (saaIPI) predicts survival
- Not all patients with relapsed and refractory aggressive NHL are potentially curable with this approach, particularly:
 - relapsed saaIPI IV
 - refractory saaIPI III/IV

Second-line Therapy of NHL

Avenues for New Directions

- Improved cytoreduction (RICE)
- Improved HDT (TBI-Ifos-Etop)
 - Non-myeloablative alloBMT
- Post remission therapy
 - Cellular therapy
 - Post remission chemotherapy (after transduction of stem cells with drug resistance genes)
- Novel targeted therapy

The Future of Cancer Therapy Targeting the Molecular Pathways

