Lymphoma Disease Management

Overview and Principles of Therapy

Owen A. O’Connor, M.D., Ph.D.
Director, Lymphoid Development and Malignancy Program
Herbert Irving Comprehensive Cancer Center
Chief, Lymphoma Service
The New York Presbyterian Hospital
Columbia University Medical Center

Lymphoma Overview and Principles of Therapy

• Non-Hodgkin’s Lymphoma
 – Epidemiology
 – Classification/Staging
 – Indolent Lymphoma
 – Aggressive Lymphoma

• Hodgkin’s Disease – Not Today

• New Approaches to Therapy – Not Today
The Ontogeny of Lymphoid Neoplasm’s is Complex and Heterogeneous

V(D)J Recombination IgV hypermutation Ig isotype switch

Immature B-cells Naive B-cells Germinal Center B-cells Memory B-cells

Bone Marrow Ag Mantle Germinal Center

ALL MCL BL FL DLBCL MM

What is Lymphoma?

- **Non-Hodgkin’s Lymphoma**
 - Typically presents with a clonal expansion of lymphocytes in lymph nodes
 - Different lymphomas arise from B, T, and NK cells
 - 85% of all lymphomas in the US are derived from B cells
 - Estimated 55,000 new cases
 - Indolent lymphomas account for approximately 40% of new diagnoses
 - Aggressive lymphomas account for 60% of presentations

- **Hodgkin’s Disease**
 - Lymph nodes are involved with the characteristic Reed-Sternberg cells
 - Evidence suggest origin from a post germinal center B cell
 - Estimated 7,500 new cases
 - Peak of incidence in the 3rd and 4th decades of life
 - Vast majority of patients can be cured with current therapy
REAL Classification of NHL Subtypes
Most Lymphomas Are Relatively Rare

![Pie chart showing the distribution of NHL subtypes. DLBCL is 31%, MCL is 6%, and other subtypes account for 16%.]

WHO/REAL Classification of Lymphoma
Characteristics of the 13 Most Common Entities

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Frequency (%)</th>
<th>Immunophenotype</th>
<th>Molecular Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCL</td>
<td>31</td>
<td>CD20+</td>
<td>BCL2, BCL6, CMYC</td>
</tr>
<tr>
<td>FL</td>
<td>22</td>
<td>CD20+, CD10+, CD5-</td>
<td>BCL2</td>
</tr>
<tr>
<td>SLL/CLL</td>
<td>6</td>
<td>CD20 weak, CD5+, CD23+</td>
<td>+12, del(13q)</td>
</tr>
<tr>
<td>MCL</td>
<td>6</td>
<td>CD20+, CD5+, CD23-</td>
<td>CYCLIN D1</td>
</tr>
<tr>
<td>PTCL</td>
<td>6</td>
<td>CD20-, CD3+</td>
<td>Variable</td>
</tr>
<tr>
<td>MZL (MALT)</td>
<td>5</td>
<td>CD20+, CD5-, CD23-</td>
<td>BCL10, +3, +18</td>
</tr>
<tr>
<td>Mediastinal LCL</td>
<td>2</td>
<td>CD20+</td>
<td>Variable</td>
</tr>
<tr>
<td>ALCL</td>
<td>2</td>
<td>CD20-, CD3+, CD30+, CD15-, EMA+</td>
<td>ALK</td>
</tr>
<tr>
<td>LL (T/B)</td>
<td>2</td>
<td>T cell CD3+, B cell CD19+</td>
<td>Variable, TCL1-3</td>
</tr>
<tr>
<td>Burkitt-like</td>
<td>2</td>
<td>CD20+, CD10-, CD5-</td>
<td>CMYC, BCL2</td>
</tr>
<tr>
<td>MZL (Nodal)</td>
<td>1</td>
<td>CD20+, CD10-, CD23-, CD5-</td>
<td>+3, +18</td>
</tr>
<tr>
<td>SLL, PL</td>
<td><1</td>
<td>CD20+, clg+, CD5-, CD23-</td>
<td>PAX-5</td>
</tr>
<tr>
<td>BL</td>
<td><1</td>
<td>CD20+, CD10+, CD5-</td>
<td>CMYC</td>
</tr>
<tr>
<td>TOTAL</td>
<td>88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Categorizing the non-Hodgkin’s Lymphomas

Aggressive Lymphoma
- Diffuse large B-cell NHL
- Peripheral T-cell NHL
- Burkitts lymphoma
- Lymphoblastic lymphoma
- Mantle cell lymphoma

Indolent Lymphoma
- Chronic lymphocytic leukemia (CLL)
- Small lymphocytic lymphoma (SLL)
- Follicular lymphoma
- Marginal Zone lymphoma
 - Nodal
 - Extranodal (MALTS)
 - Primary splenic

Approach with Curative Intent
- PBSCT Can Salvage Relapse
- Typically Incurable
- Possible Cure for Stage 1A Disease (RT or Chemo-RT)
- Chronic Disease Manageable
- Monoclonal antibodies changing natural history

Clinical Prognostic Factors Tell Only Part of the Story

International Prognostic Index (IPI)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Adverse</th>
<th>Risk Group</th>
<th>Number of Factors Present</th>
<th>5-year DFS (%)</th>
<th>5-year OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >60 years</td>
<td></td>
<td>Low</td>
<td>0-1</td>
<td>70</td>
<td>73</td>
</tr>
<tr>
<td>PS ≥2</td>
<td></td>
<td>Low/Intermediate</td>
<td>2</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>LDH >Normal</td>
<td></td>
<td>High/Intermediate</td>
<td>3</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>Extranodal sites ≥2</td>
<td></td>
<td>High</td>
<td>4-5</td>
<td>40</td>
<td>26</td>
</tr>
</tbody>
</table>

Age-Adjusted

<table>
<thead>
<tr>
<th>Factor</th>
<th>Adverse</th>
<th>Risk Group</th>
<th>Number of Factors Present</th>
<th>5-year DFS (%)</th>
<th>5-year OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS ≥2</td>
<td></td>
<td>Low</td>
<td>0</td>
<td>56</td>
<td>83</td>
</tr>
<tr>
<td>LDH >Normal</td>
<td></td>
<td>Low/Intermediate</td>
<td>1</td>
<td>44</td>
<td>69</td>
</tr>
<tr>
<td>Stage III-IV</td>
<td></td>
<td>High/Intermediate</td>
<td>2</td>
<td>37</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>3</td>
<td>21</td>
<td>32</td>
</tr>
</tbody>
</table>

International Prognostic Index Predicts Overall Survival – What is Biological Basis?

Prognostic Subgroups in de novo DLBCL Based on Ontogeny

DNA microarray analysis can be used to predict survival after chemotherapy

Lymphoma Overview and Principles of Therapy

• Non-Hodgkin’s Lymphoma
 – Epidemiology
 – Classification/Staging
 – Indolent Lymphoma
 – Aggressive Lymphoma

• Hodgkin’s Disease

• New Approaches to Therapy

U.S. Cancer Mortality, All Ages

All sites -2.6
Lung -1.5
Breast (women) -6.3
Prostate -6.2
Colorectal -5.4
Ovary -4.8
Cervix Uteri -9.7
Bladder -1.5
Oral -9.6
Lymphatic 3.8
Leukemias -1.9
Other -0.9

Percent change, 1991-1995
Non-Hodgkin’s Lymphoma: SEER Incidence by Age
1973-1975 vs 1993-1995; All Races, Male

Age Distribution of Malignant Lymphoma
All Histologic Diagnoses

Data from the Royal Marsden Hospital 1962-1972.
Lymphoma Overview and Principles of Therapy

• Non-Hodgkin’s Lymphoma
 – Epidemiology
 – Classification/Staging
 – Indolent Lymphoma
 – Aggressive Lymphoma

• Hodgkin’s Disease

• New Approaches to Therapy

WORLD HEALTH ORGANIZATION (WHO) T-CELL LYMPHOMA CLASSIFICATION

A Whole Different Lecture

Precursor T/NK Neoplasms
- Precursor T lymphoblastic leukemia/lymphoma
- Blastic NK lymphoma

Peripheral T/NK Neoplasms

<table>
<thead>
<tr>
<th>Predominantly leukemic/disseminated</th>
<th>Predominantly Extranolad</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell prolymphocytic leukemia</td>
<td>Mycosis Fungoides (CTCL)</td>
</tr>
<tr>
<td>T-cell large granular lymphocytic</td>
<td>Sezary syndrome</td>
</tr>
<tr>
<td>NK/T-cell leukemia/lymphoma</td>
<td>Primary cutaneous CD30+ disorders</td>
</tr>
<tr>
<td>Adult T-cell leukemia/lymphoma</td>
<td>Anaplastic large cell lymphoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predominantly nodal</th>
<th>Subcutaneous panniculitis T-cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angioimmunoblastic T-cell lymphoma</td>
<td>NK/T-cell lymphoma-nasal</td>
</tr>
<tr>
<td>Anaplastic large cell lymphoma</td>
<td>Enteropathy-type intestinal lymphoma</td>
</tr>
<tr>
<td>Peripheral T-cell lymphoma</td>
<td>Hepatosplenic T-cell lymphoma (γ,δ)</td>
</tr>
<tr>
<td>(Unspecified)</td>
<td>Extranolad peripheral T/NK-cell lymphoma</td>
</tr>
<tr>
<td>(Unspecified)</td>
<td>(Unspecified)</td>
</tr>
</tbody>
</table>
Clinical Staging of Lymphoma

Modified Ann Arbor Staging

- **Clinical Stages**
 - I: Single lymph node group
 - II: Multiple lymph node groups on one side of the diaphragm
 - III: Lymph nodes on both sides of the diaphragm
 - IV: Extra-nodal disease

- **Modifiers**
 - B: fevers, night sweats, weight loss
 - A: Absence of B symptoms
 - X: Mass > 10 cm or 1/3 thoracic diameter
 - E: Extra-nodal extension of disease
Lymphoma Overview and Principles of Therapy

• Non-Hodgkin’s Lymphoma
 – Epidemiology
 – Classification/Staging
 – Indolent Lymphoma
 – Aggressive Lymphoma

• Hodgkin’s Disease

• New Approaches to Therapy

CLINICAL MANAGEMENT OF FOLLICULAR LYMPHOMA
In Patients With An Indication for Therapy

Indolent NHL In Need of Treatment

Chemotherapy
- Alkylator Rx
 - CVP/CHOP
 - Chlorambucil

- Purine Analog Rx
 - Fludarabine
 - FND
 - Flu / CyFlu

- Investigational

Biological

- **Specific**
 - Antibody Rx
 - Rituximab
 - R-CHOP/R-CVP
 - R-Flu (R & all combos w / R)
 - Radioimmuno Rx
 - Vaccines

- **Non-Specific**
 - Interferon

Transplantation
- Autologous
- Allogeneic
Indolent B-Cell Lymphoma
Survival by Era

![Graph showing survival rates by era with data points for 1987-1996 (N=668), 1976-1987 (N=513), and 1960-1976 (N=195).]

Follicular Lymphoma

- H&E
- CD20: CD 10+, CD 19+, CD 20+, CD 22+, LCA+, κ/λ clonal excess
- CD10
- CD3: CD 3 -, CD 5 -, CD 15 -, CD 30 -

Courtesy of Sandra J. Horning, MD.
FL: Reproducibility of Grading

Berard Criteria

<table>
<thead>
<tr>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Cleaved</td>
<td>Mixed</td>
<td>Large Cell</td>
</tr>
<tr>
<td>Large Cells Per High Power Field</td>
<td><5</td>
<td>5-15</td>
</tr>
<tr>
<td>Expert Concordance</td>
<td>72%</td>
<td>61%</td>
</tr>
</tbody>
</table>

Follicular Lymphoma

- **Molecular**
 - t(14;18) translocation
 - BCL2 is overexpressed
 - BCL2 is anti-apoptotic

- **Clinical**
 - Equal number of men and women
 - Uncommon in Blacks and Asians
 - Transformation is common
 - Spontaneous regress occurs in ~30% of cases

- **Pathology**
 - subtypes: Grades 1, 2, 3
Follicular Lymphoma
Histological Transformation (HT)

- Actuarial risk of HT is 25% to 60% at 8 years
- HT results from genetic alteration of a single cell
 - P53 mutation (~50%), translocations of c-myc (~15%) and BCL6 (~10%)
- Prognosis following HT is generally poor

Indolent B Cell Lymphoma
Clinical Management

Localized

Advanced
Low Tumor Burden

Advanced
High Tumor Burden

Involved/Extended
Field Radiation

Observation

Therapy
Gastric MALT Lymphoma
A *curable* low grade lymphoma

- Strong association with *Heliobacter pylori* infection
 - In 10%-50% of cases, treatment of the infection will result in regression of the lymphoma
 - Remissions may take up to 6 months

- Most patients who fail to respond to antibiotics can be *cured* with radiation therapy

Disease-Free Survival

- Proportion Surviving
- Months
- N = 48 patients
Indolent B Cell Lymphoma: Advanced Stage
Principles of Therapy

- Not curable with conventional therapy
- Presents in older patients who may have significant co-morbid conditions complicating therapeutic options
- Observation is appropriate if there are no indications for therapy
- Response duration is generally shorter with each course of therapy
- Enrollment on clinical trials is recommended if feasible
Indolent B Cell Lymphoma: Advanced Stage
Observation in Absence of an Indication for Treatment

- Both prospective randomized and retrospective studies have:
 - No survival disadvantage
 - 3 year median progression to treatment
 - Same rate of histological transformation

Indolent B Cell Lymphoma
Clinical Management

Indolent B Cell Lymphoma

- Localized
 - Involving/Extended Field Radiation
- Advanced Low Tumor Burden
- Observation
- Advanced High Tumor Burden
 - Therapy
Indolent B Cell Lymphoma: Advanced Stage
Clinical Management with Indication for Therapy

Diagnosis of Low Grade Lymphoma
Needs Treatment

Chemotherapy-based
Alkylation Based Treatment
- e.g. CVP
- Chlorambucil

Purine Analogs
- Fludarabine
- FND
- CyFlu

B Lymphocytes
- DR
- slg
- CD19
- CD20
- CD22

TARGETS ON B-CELLS

Surface proteins can be targeted with:
- Active immunotherapy
 - Vaccines
- Passive immunotherapy
 - Unmodified MAbs
 - Conjugated MAbs
 - Radioisotopes
 - Drugs
 - Toxins
 - Peptides selected for binding
 - Small molecules

Specific
- Antibody-Based
- RituXimab Alone
- CHOP+RituXimab

Non-Specific
- Interferon

Autologous
- Allogeneic
 - Full or Non-myeloablative

Radio-immunotherapy
- Tositumomab
- Ibritumomab Tiuxetan

Vaccination
B-Cell Life Cycle
CD20 Tumor Specificity

Pluripotent Stem Cell → Lymphoid Stem Cell → Pre-B Cell → B Cell → Activated B Cell → Plasma Cell

CD20 Antigen Expression

CML
Precursor B-Cell Acute Leukemias
B-Cell Lymphomas, CLL
Myeloma

B1 (CD20) Antigen

Exon VI
Exon VII
Exon VIII
Exon IV
Exon V
Exon V
Exon III
Exon II
Exon I

Extracellular
Cytoplasm
COOH
NH₂
E III
E IV

B cell

CD20 antigen

Rituximab

- Engineered derivative of IDEC-2B8
- Murine antigen binding domain
- Human κ constant region
- Human IgG1 constant region
- Induces apoptosis

- CD20 antigen
 - Hydrophobic, 35 kD phosphoprotein
 - Expressed only on B lineage cells
 - Important for cell cycle initiation and differentiation
 - Does not shed or rapidly modulate off cell surface

- Effect of chimerism
 - $t_{1/2} = 76$ h after 1st dose
 - $t_{1/2} = 206$ h after 4th dose
 - Activates complement
 - Induces antibody dependent cell-mediated cytotoxicity

Cytotoxic Mechanisms of Monoclonal Antibodies

- Effector cells/complement
- Apoptosis
- Radiation/radionuclide
- Toxin/drug
RITUXIMAB CLINICAL TRIAL SUMMARY
LOW GRADE LYMPHOMA

<table>
<thead>
<tr>
<th>Trial Phase (Author)</th>
<th>N</th>
<th>Patient Population</th>
<th>Regimen</th>
<th>RR</th>
<th>RD Months</th>
<th>TTP (median) Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivotal, Phase III</td>
<td>166</td>
<td>Low grade NHL, relapsed/refractory</td>
<td>Rituximab 375 mg/m² × 4</td>
<td>ORR 48%</td>
<td>11.2</td>
<td>13+</td>
</tr>
<tr>
<td>(McLaurin et al)</td>
<td></td>
<td></td>
<td>CR 6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PR 42%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab/CHOP-Phase II</td>
<td>40</td>
<td>Low grade NHL, new dx or relapsed/refractory</td>
<td>Rituximab 375 mg/m² × 6 CHOP x 6</td>
<td>ORR 95%</td>
<td>39.1+</td>
<td>41.1</td>
</tr>
<tr>
<td>(Czuczman et al)</td>
<td></td>
<td></td>
<td>CR 55%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PR 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **RR**: Response Rate
- **ORR**: Overall Response Rate
- **CR**: Complete response
- **PR**: Partial Response
- **RD**: Response Duration
- **TTP**: Time to tumor progression

External Beam Irradiation

![External Beam Irradiation Diagram]

Radioimmunotherapy

![Radioimmunotherapy Diagram]
Crossfire Enhances Antibody Action

Naked Antibody

Radiolabeled Antibody

• Ibritumomab tiuxetan
 – Murine IDEC-2B8 (parent of rituximab)
 – MX-DTPA conjugated to antibody forming strong urea-type bond
 – Stable retention of 90Y

• Yttrium-90
 – $t_{1/2} = 64$ hours
 – Outpatient administration
 – Beta emission
 – $X_{90} = 5$ mm
Iodine I 131 Tositumomab
Mechanism Of Action

- Iodine I 131 tositumomab
 - murine IgG2a anti-CD20 MAb
 - B-cell specific
 - triggers apoptosis
 - antibody-dependent cellular cytotoxicity
- Iodine-131 radioisotope
 - beta emission
 - short path length "crossfire" effect (~1mm)
 - gamma emission
 - allows individual dosimetry
- Iodine I 131 tositumomab
 - targeted radiotherapy

RITUXIMAB v ^90^Y-2B8: RESPONSE TO THERAPY
INTERIM ANALYSIS (n=90)

<table>
<thead>
<tr>
<th>Histology</th>
<th>Rituximab N (%)</th>
<th>Ibritumomab N (%)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>20 (43.5)</td>
<td>35 (79.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>95% CI</td>
<td>28.1-58.9%</td>
<td>64.2-89.7%</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>3 (7%)</td>
<td>9 (21)</td>
<td>0.057</td>
</tr>
<tr>
<td>PR</td>
<td>17 (37%)</td>
<td>26 (59%)</td>
<td></td>
</tr>
</tbody>
</table>

*Calculated from Cochran-Mantel-Haenszel test over histology type (A/Follicular/Transformed)

Witzig, et al., Blood, 94 (Supplement 1), Abstract 2805
Indolent Lymphoma
Continuing Challenges

• Define the optimal use of antibody-based therapy
 – First line
 – In combination with chemotherapy
 – Sequentially with chemotherapy

• Refine the use of high dose therapy to provide maximal benefit

• Develop new targeted therapy based on molecular mechanisms of lymphomagenesis
Lymphoma Overview and Principles of Therapy

- Non-Hodgkin’s Lymphoma
 - Epidemiology
 - Classification/Staging
 - Indolent Lymphoma
 - Aggressive Lymphoma

- Hodgkin’s Disease

- New Approaches to Therapy

Overall Survival: Large Cell Histologies

- Anaplastic large cell lymphoma
- Diffuse large B cell lymphoma
- Burkitt-Like
- Peripheral T cell lymphoma

Log rank test: p<0.001

Years: 0 1 2 3 4 5 6 7 8 9
Survival: 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Three Generations of Chemotherapy for NHL: Apparent Improvement in Outcome

<table>
<thead>
<tr>
<th>First Generation</th>
<th>Second Generation</th>
<th>Third Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS: 35-45%</td>
<td>DFS: 50-70%</td>
<td>DFS: 60-75%</td>
</tr>
<tr>
<td>BACOP</td>
<td>ProMACE-MOPP</td>
<td>MACOP-B</td>
</tr>
<tr>
<td>MOPP</td>
<td>M-BACOD</td>
<td>ProMACE-CytaBOM</td>
</tr>
<tr>
<td>COPA-Bleo</td>
<td>COP-BLAM</td>
<td>ProMACE-MOPP 1/8</td>
</tr>
<tr>
<td>CAP-BOP</td>
<td></td>
<td>COP-BLAM III</td>
</tr>
<tr>
<td>COMLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National High Priority Lymphoma Study: Time to Treatment Failure by Randomized Treatment Arm

<table>
<thead>
<tr>
<th>Years after Randomization</th>
<th>CHOP</th>
<th>M-BACOD</th>
<th>P-CytaBOM</th>
<th>MACOP-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Risk</td>
<td>225</td>
<td>223</td>
<td>233</td>
<td>218</td>
</tr>
<tr>
<td>Relapses or death</td>
<td>114</td>
<td>109</td>
<td>115</td>
<td>119</td>
</tr>
<tr>
<td>3-year estimate</td>
<td>41%</td>
<td>46%</td>
<td>46%</td>
<td>41%</td>
</tr>
</tbody>
</table>

International Prognostic Index

Prognostic Indicators (APLES)
- Age > 60 years
- Performance status > 1
- LDH > 1 x normal
- Extranodal sites > 1
- Stage III or IV

Risk Category Factors
- Low 0 or 1
- Low-intermediate 2
- High-intermediate 3
- High 4 or 5

References:

International Prognostic Index

Age-Adjusted (aaIPI)

Prognostic Indicators (PLS)
- Performance status > 1
- LDH > 1 x normal
- Stage III or IV

Risk Category Factors
- Low 0
- Low-intermediate 1
- High-intermediate 2
- High 3

References:
International Prognostic Index

Age-Adjusted Overall Survival

![Graph showing survival rates for different risk groups.](image)

Diffuse Large B Cell Lymphoma

Distinct Forms Revealed by Expression Arrays

- Lymphochip expression array data segregates diffuse large B cell lymphoma into two molecular entities:
 - Germinal center phenotype
 - Activated B cell phenotype

- Molecular subtype is independent of International Prognostic Index risk group

Management of Aggressive NHL

R-CHOP

CR

 Cure

Relapse

HDT/ASCT

Primary Refractory

???

Aggressive Lymphoma

Second-line Therapy
Management of Aggressive NHL

R-CHOP

CR Primary Refractory

Cure

Relapse

HDT/ASCT

Parma Trial: Event-free Survival

Second Line Therapy for Aggressive NHL

• Ideal second line therapy
 – Provides effective reduction in tumor size
 – Results in minimal non-hematologic toxicity
 – Effectively mobilizes stem cells into the peripheral blood

Therapy for Aggressive NHL

Summary

• R-CHOP remains the standard, albeit with suboptimal results, for refractory
• Passive Immunotherapy in aggressive NHL has changed the landscape
• High dose therapy with ASCT is superior to chemotherapy for relapsed and refractory aggressive lymphoma
• A better response to second line therapy correlates with a superior outcome post ASCT
• Based on intention to treat, about 30% of patients are benefited by second-line therapy with high dose chemotherapy consolidation
Therapy for Aggressive NHL

Summary

• Patients with primary refractory disease, both induction failures and those achieving only a PR to first line therapy can benefit from ASCT

• Second-line age-adjusted international prognostic index (saalPI) predicts survival

• Not all patients with relapsed and refractory aggressive NHL are potentially curable with this approach, particularly:
 – relapsed saalPI IV
 – refractory saalPI III/IV

Second-line Therapy of NHL

Avenues for New Directions

• Improved cytoreduction (RICE)

• Improved HDT (TBI-Ifos-Etop)
 – Non-myeloablative alloBMT

• Post remission therapy
 – Cellular therapy
 – Post remission chemotherapy (after transduction of stem cells with drug resistance genes)

• Novel targeted therapy
The Future of Cancer Therapy

Targeting the Molecular Pathways

TARGETING BCL-6 IN LYMPHOMA

- **BCL6**
 - HDAC
 - Ac

- **BCL6**
 - Ac
 - Ac

No Transcription

HDAC Inhibitor

Transcription (ex: p21WAF1)

Growth Inhibition, Apoptosis, Differentiation

Anti-tumor activity
The BCL6:p53 Network: A Rational Target

SAHA
HDAC inhibitor

Acetylation

Sir2 inhibitor
NIACINAMIDE

BCL6

Co-repressor complex

Small molecules

DNA damage

p53

DEATH

ETOPOSIDE

Thank You