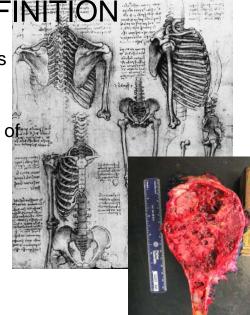
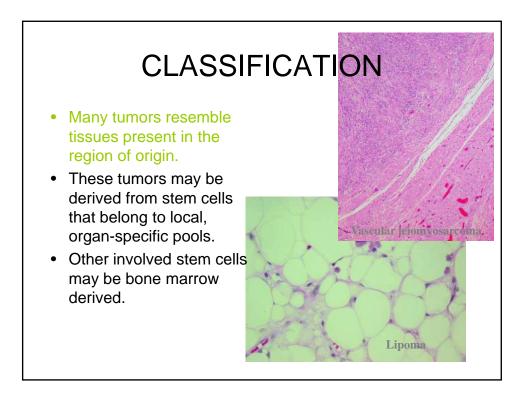
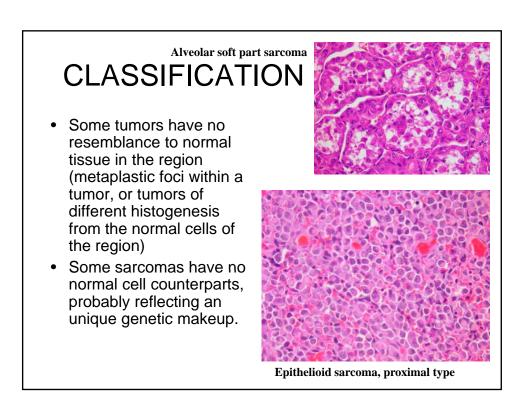


DEFINITION


- Soft tissue pathology deals with tumors of the connective tissues.
- The concept of soft tissue is understood broadly to include non-osseous tumors of extremities, trunk wall, retroperitoneum and mediastinum, and head & neck.
- Excluded (with a few exceptions) are organ specific tumors.


 Bone pathology deals with tumors of the skeletal system.

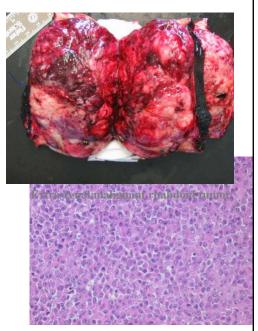

 Included are subsets of tumors from extraosseous sites that show osseous and cartilaginous differentiation.

CLASSIFICATION

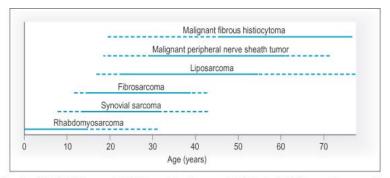
- Purpose of classification is to link similar tumors in order to understand their behavior, determine the most appropriate treatment, and investigate their biology.
- Therefore tumors are classified according to the cell type they resemble.
- Refinements are coming from cytogenetics, molecular, and gene expression studies.
- The majority arise from -or show differentiation toward- mesenchymal cells, but some show other differentiation (neuroectodermal, histiocytic).
- A small subset is of unknown histogenesis.

CLASSIFICATION

- Tumors are also classified according their biologic potential.
- A three-tiered system is used:
 - 1. Benign
 - 2. Borderline (intermediate malignant)
 - 3. Malignant.

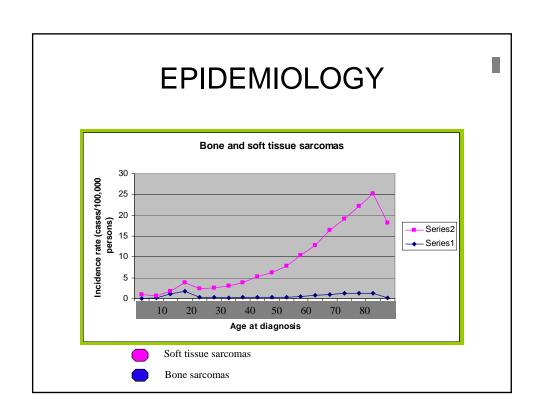

EPIDEMIOL

- Soft tissue (ST) sarcomas are rare tumors compared to other malignancies: 8,700 new sarcomas in 2001, with 4,400 deaths.
- The incidence of ST sarcomas in the USA is approximately 3.3 cases per 100,000 people.
- This is roughly 5% of each of some of the most common carcinomas (prostate, breast and lung), half of all brain tumors, and approximately equal to AML.

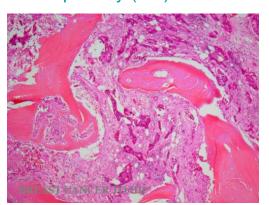

EPIDEMIOLOGY

- There is a slight male predominance (with some subtypes more common in women).
- The majority of soft tissue tumors affect older adults (some sub-groups occur predominantly or exclusively in children).
- Incidence of benign soft tissue tumors not known, but probably outnumber malignant tumors 100:1.

EPIDEMIOLOGY


 The knowledge of epidemiologic data may help in diagnosis.

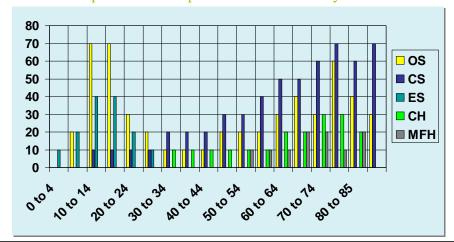
© Elsevier, Inc. 2008 Weiss and Goldblum. Enzinger and Weiss's Soft Tissue Tumors, 5th edition.


BONE TUMORS- EPIDEMIOLOGY

- Primary bone tumors are rare.
- Bone sarcomas account for 0.2% of all neoplasms (SEER Cancer Statistics Review, 1973-1996).
- Soft tissue sarcomas are approximately 10 times more common than primary bone sarcomas.

BONE TUMORS-EPIDEMIOLOGY

- The majority of tumors involving bone are secondary (or metastatic):
 - secondary (metastases) (95%)
 - primary (5%)

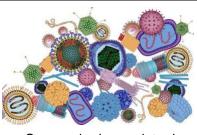


Secondary Tumors of Bone

- •The carcinomas most frequently involved with bone metastasis originate from:
- Lung
- Breast
- Prostate
- G.I
- Kidney
- Thyroid

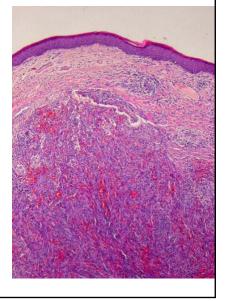
BONE TUMORS

- •Bone sarcomas as a group have a bimodal distribution.
- •The first peak is in the second decade.
- •The second peak occurs in patients older than sixty.

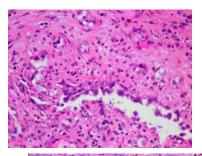

ETIOLOGY

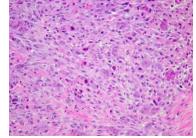
- The etiology of sarcomas is poorly understood, and what is known apply only to a small fraction of the group.
- The known etiologic agents are ionizing radiation, oncogenic viruses, and chemicals.
- These agents are able to cause genetic alterations that can lead to tumorigenesis.

ETIOLOGY


- Radiation induced sarcomas develop in 1% of patients who have undergone therapeutic irradiation.
- The interval between irradiation and diagnosis of sarcoma varies between 5 and 10 years.
- The majority of radiationinduced sarcomas are high grade and poorly differentiated (MFH, FS, OS,

ETIOLOGY

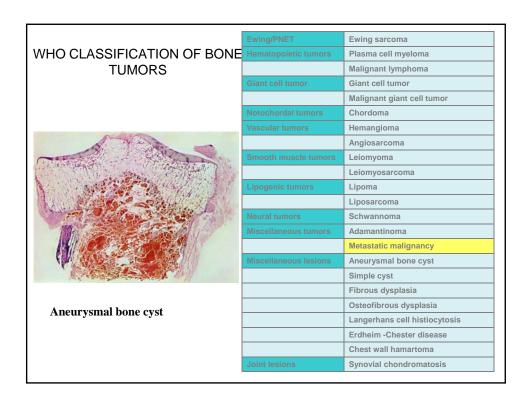

- Oncogenic viruses introduce new genomic material in the cell, which encode for oncogenic proteins that disrupt the regulation of cellular proliferation.
- Two DNA viruses have been linked to soft tissue sarcomas:
 - Human herpes virus 8 (HHV8) linked to Kaposi's sarcoma
 - Epstein-Barr virus (EBV) linked to subtypes of leiomyosarcoma
- In both instances the connection between viral infection and sarcoma is more common in <u>immunosuppressed</u> hosts.

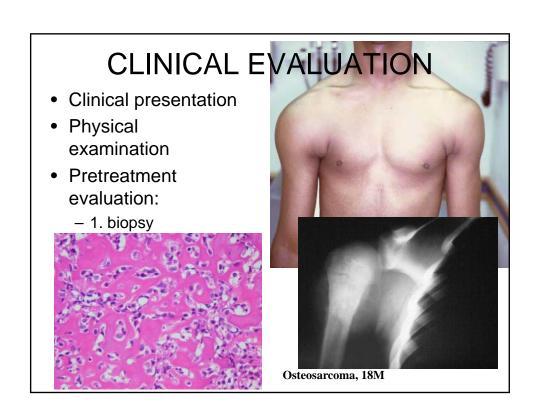


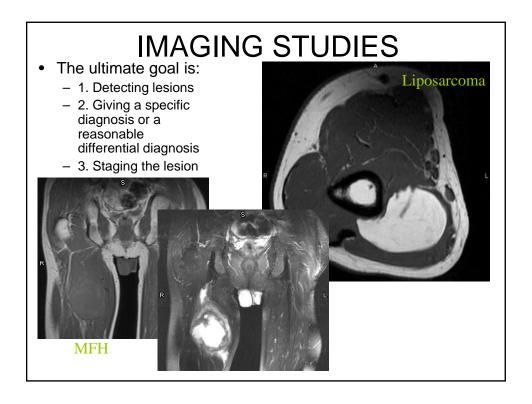
ETIOLOGY

- Herbicides ("agent orange") and peripheral soft tissue sarcomas
- Retained metal objects (shrapnel, surgical devices) and OS, AS and MFH
- Vinyl chloride, inorganic arsenic, Thorotrast, anabolic steroids linked to AS and MFH.

- Host factors may also play a role in the development of soft tissue sarcomas.
 - Immunosuppression, besides Kaposi's sarcoma, may be associated with sarcomas.
 - Lymphedema, congenital or acquired (postmastectomy) is a rare cause of extremity-based AS.

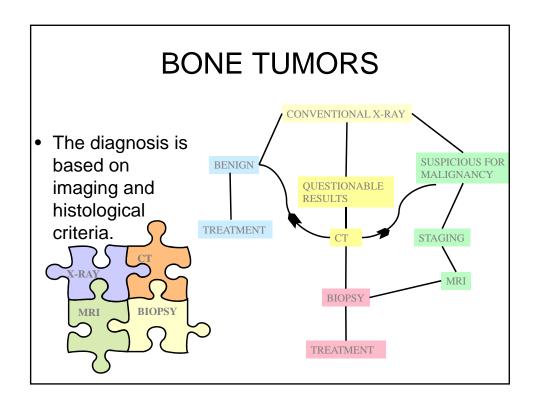

CONGENITAL SYNDROMES ASSOCIATED WITH BONE AND SOFT TISSUE TUMORS							
Disorder	Inheritance	Locus	Gene	Tumor			
Albright hereditary osteodystrophy	AD	20q13	GNAS1	Soft tissue calcifications and osteomas			
Bannayan -Riley- Ruvalcaba syndrome	AD	10q23	PTEN	Lipomas, hemangiomas			
Beckwith- Wiedemann syndrome	Sp/AD	11p15	Complex	Embryonal RMS, myxomas, fibromas, hamartomas			
Bloom syndrome	AR	15q26	BLM	Osteosarcoma			
Carney complex (Familial myxoma syndrome)	AD	17q23-24 2p16	PRKAR1AK	Myxomas and pigmented schwannomas			
Familial chordoma	AD	7q33	-	Chordomas			
Costello syndrome	Sporadic	-	-	Rhabdomyosarcomas			
Cowden disease (Multiple hamartoma syndrome)	AD	10q23	PTEN	Lipomas, Hemangiomas			
Diaphyseal medullary stenosis	AD	9p21-22	-	MFH			
Familial adenomatous polyposis	AD	5q21	APC	Craniofacial osteomas, desmoid tumors			
Familial expansile osteolysis	AD	18q21	TNFRSF11A	Osteosarcomas			
Familial infiltrative fibromatosis	AD	5q21	APC	Desmoid tumors			
Langer- Giedion syndrome	Sporadic	8q24	EXT1	Osteochondromas, chondrosarcomas			
Li-Fraumeni syndrome	AD	17p13 22q11	TP53 CHEK2	Osteosarcomas, RMS, other sarcomas			
Familial multiple lipomas	AD	-	-	Lipomas			
Symmetrical linemateria	Sporadio			Linemas linematesis of head and neck			

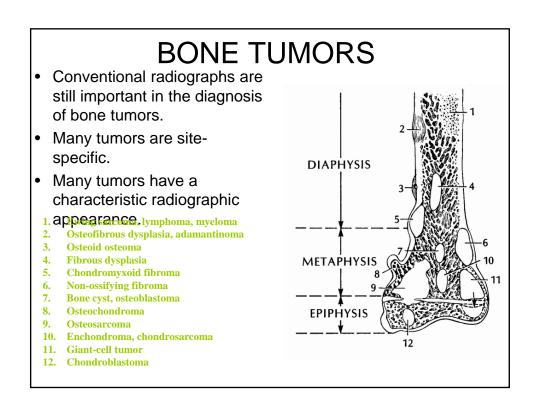

Disorder	Inheritance	Locus	Gene	Tumor
Maffucci syndrome	Sporadic	-	-	Enchondromas, CS, hemangiomas, AS
Mazabraud syndrome	Sporadic	20q13	GNAS1	Fibrous dysplasia, OS, IM myxomas
McCune -Albright syndrome	Sporadic	20q13	GNAS1	Fibrous dysplasia, osteosarcomas
Multiple osteochondromas, non- syndromic	AD	8q24 11p11-12	EXT1 EXT2	Osteochondromas, chondrosarcomas
Myofibromatosis	AR	-	-	Myofibromas
Neurofibromatosis type 1	AD	17q11	NF1	Neurofibromas, MPNST
Neurofibromatosis type 2	AD	22q12	NF2	Schwannomas
Ollier disease	Sporadic	3p21-22	PTHR1	Enchondromas, chondrosarcomas
Paget disease of bone, familial	AD	18q21 5q31 5q35		Osteosarcomas
Proteus syndrome	Sporadic	-	-	Lipomas
Retinoblastoma	AD	13q14	RB1	Osteosarcomas, soft tissue sarcomas
Rhabdoid predisposition syndrome	AD	22q11	SMARCB1	Malignant rhabdoid tumors
Rothmund- Thompson syndrome	AR	8q24	RECQL4	Osteosarcomas
Rubinstein- Taybi syndrome	AD	16p13	CREBBP	Rhabdomyosarcomas
Venous malf. With glomus cells	AD	1p21-22	-	Glomus tumors
Werner syndrome	AR	8p11-12	WRN	Bone and soft tissue sarcomas

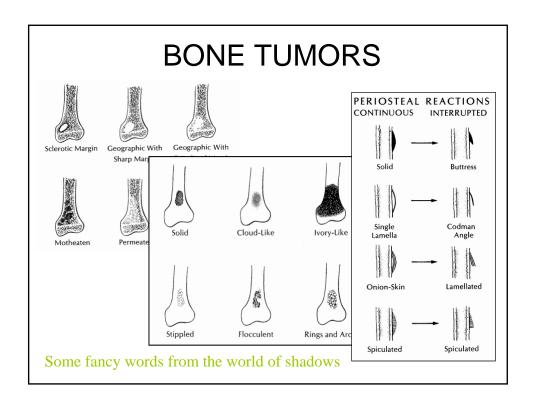

SOFT TISSUE TUMORS CLASSIFICATION

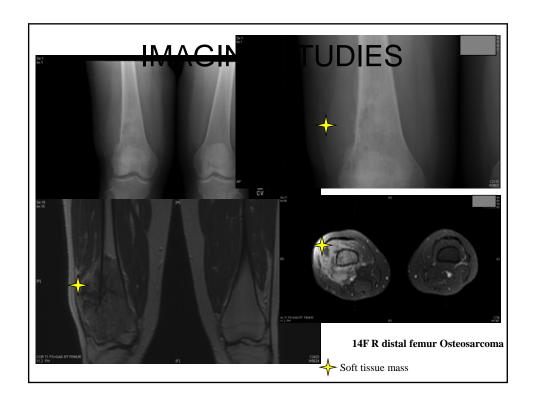
MAJOR TYPES OF SO		
Cell type	Benign tumor	Malignant tumor
(Myo)fibroblast	Fibroma, myxoma	Fibrosarcoma, MFH
Adipocyte	Lipoma	Liposarcoma
Smooth muscle cell	Leiomyoma	Leiomyosarcoma
Skeletal muscle cell	Rhabdomyoma	Rhabdomyosarcoma
Endothelial cell	Hemangioma	Angiosarcoma
Schwann cell	Schwannoma, neurofibroma	MPNST
Cartilage cell	Chondroma	Chondrosarcoma
Interstitial cell	GIST	GIST
Histiocyte	JXG, GCTTS, RDD	True histiocytic sarcoma
Unknown	No benign counterparts	ES, SS, ES, ASPS

	Cartilage tumors	Osteochondroma	
WHO CLASSIFICATION OF		Chondroma	Enchondroma
BONE TUMORS			Periosteal chondroma
			Mult. chondromatosis
		Chondroblastoma	
		Chondromyxoid fibroma	
The second second		Chondrosarcoma	Central
			Peripheral
			Dedifferentiated
A SECTION ASSESSMENT			Mesenchymal
			Clear cell
	Osteogenic tumors	Osteoid osteoma	
		Osteoblastoma	
		Osteosarcoma	Conventional
			Telangiectatic
			Small cell
			Low grade central
			Secondary
			Parosteal
			Periosteal
11000			High grade surface
A Second	Fibrogenic tumors	Desmoplastic fibroma	
		Fibrosarcoma	
Osteosarcoma	Fibrohistiocytic tumors	Desmoplastic fibroma	
		Fibrosarcoma	

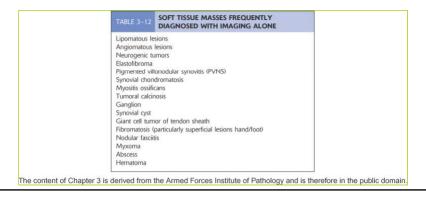


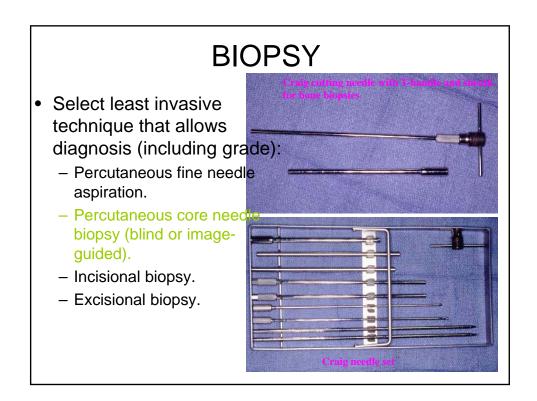


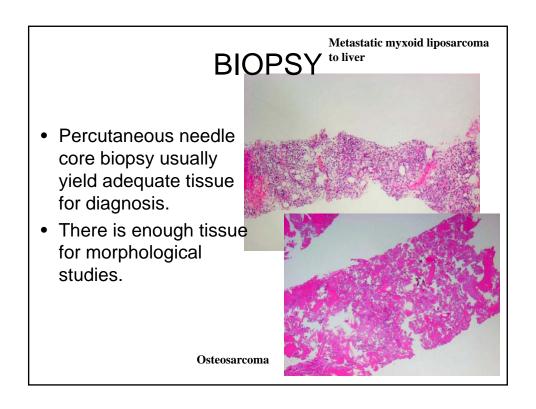

IMAGING STUDIES

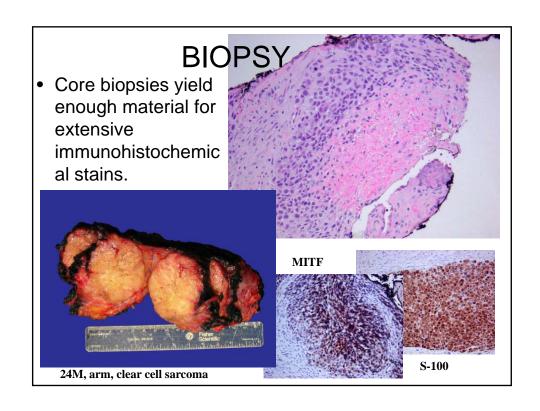

 CT and particularly MRI allow detection and and staging by delineating anatomical extent in virtually all cases.

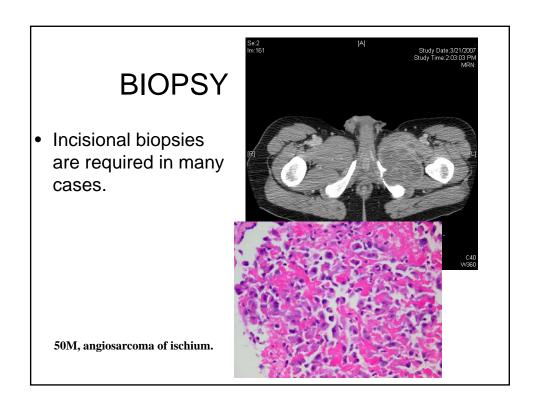
A relatively specific diagnosis can be given in approximately 25-50% of cases, according to the type.
 † †
 † †

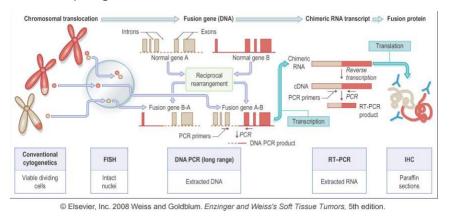






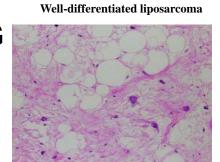

IMAGING STUDIES

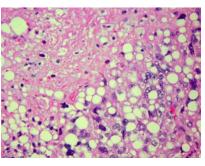

- Although imaging studies may give a reasonably accurate diagnosis on the biological potential of a lesion, there are not many lesions that may be accurately diagnosed by imaging studies alone.
- The biopsy is the gold standard for diagnosis.



SPECIAL DIAGNOSTIC STUDIES

 Many sarcomas require additional studies to confirm the diagnosis and, in some cases, to add prognostic information.

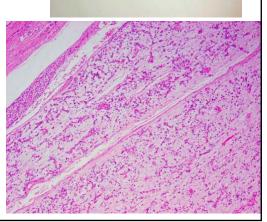

GENETICS OF CONNECTIVE TISSUE NEOPLASMS

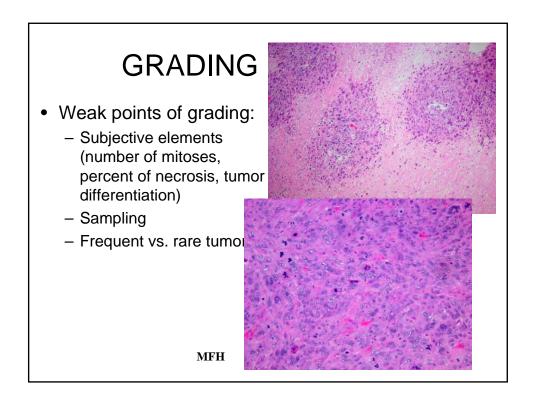

- Numerous cancer-specific genetic alterations have been described, unfortunately almost exclusively for soft tissue neoplasms.
- Some of them (such as translocations, numerical changes, large deletions and gene amplifications) are seen at the cytogenetic level.
- Subtle changes (such as single base pair substitutions, small deletions) require molecular genetic detection.

Translocation	Gene fusion	Approximate prevalence
t(2;13)(q35;q14)	PAX3-FKHR	65%
t(1;13)(p36;q14)	PAX7-FKHR	15%
t(2;22)(q33;q12)	EWS-CREB1	*
t(12;22)(q13;q12)	EWS-ATF1	*
t(12;16)(q13;p11)	FUS-ATF1	
t(X;17)(p11;q25) ²	ASPL-TFE3	>95%
t(12;22)(q13;q12)	EWS-ATF1	>90%
t(2:22)(a33:a12)	EWS-CREB1	*
t(17;22)(q21;q13)3	COL1A1-PDGFB	>90%
t(2:11)(a31:a12)	Unknown	
		>95%
	Unknown	*
	FWS-NR4A3	75%
	TAF15-NR4A3	25%
	EWS-FLI1	90%
	EWS-ERG	5%
		<1%
	EWS-FEV	<1%
		<1%
		<1%
		>95%
		<5%
		*
		>95%
	ALK fusions	>50%
t with 8g12	PLAG1 fusions	*
t with 12a15	HMGA2 fusions	*
	HMGA1 rearrangements4	*
	FUS-CHOP	>95%
	EWS-CHOP	<5%
	ACTB-GLI	*
t(X;18)(p11.2;q11.2)	SYT-SSX1	65%
	SYT-SSX2	35%
	(ti,13)(p36,q14) (ti,22)(q33;q12) (ti12;22)(q13;q12) (ti12;22)(q13;q12) (ti12;22)(q13;q12) (ti2;22)(q33;q12) (ti2;22)(q33;q12) (ti2;22)(q33;q12) (ti12;22)(q21;q13) ³ (ti,13)(p36,3;q25) (ti,22)(q22-q3;q12) (ti,3)(p36,3;q25) (ti,22)(q22-q3;q12) (ti,22)(q22-q3;q12) (ti,22)(q22-q12) (ti,22)(q22-q12) (ti,22)(q22-q12) (ti,22)(q22-q12) (ti,22)(q22-q12) (ti,22)(q22-q12) (ti,22)(q33;q12) (ti,22)(q33;q12) (ti,22)(q12;q12) (ti,22)(q12;q12) (ti,22)(q12;q12) (ti,22)(q23;q12) (ti,22)(q33;q12) (ti,22)(q13;q12) (ti,16)(p13;p11,2) (ti,16)(p13;p11,2) (ti,16)(p13;p11,2) (ti,16)(p13;p11,2) (ti,16)(p13;p11,2) (ti,16)(p13;p11) (ti,22)(q13;q11) (ti,22)(q13;q11) (ti,22)(q13;q11) (ti,2(p2;q13)	It1;13\(\rangle a)\(\frac{1}{2}\) \(\rangle a)\(\rangle a)\(\frac{1}{2}\) \(\rangle a)\(\rangle a)\(\r

GRADING

- Grading is an element of any current staging system.
- Correct grading requires correct histologic typing of the sarcoma, as demonstrated by the inclusion of "histologic type" as a grading variable.





Pleomorphic liposarcoma

GRADING

- Grading applies best to excision specimen because biopsies may be nonrepresentative of the correct grade.
- Preoperative treatments, such as radiation, chemotherapy, or embolization, can make grading of the resection specimen inapplicable.

GRADING

- · Any diagnostic entity has a range of malignancy.
- The grade within the overall range depends on the histologic features (cellularity, pleomorphism, mitotic activity, necrosis, etc.)

Histologic type	Histologic grade			
histologic type	1	11	III	
Fibrosarcoma				
Infantile fibrosarcoma				
Dermatofibrosarcoma protuberans				
Malignant fibrous histiocytoma	-			
Liposarcoma				
Well-differentiated liposarcoma				
Myxoid liposarcoma				
Round cell liposarcoma				
Pleomorphic liposarcoma				
Leiomyosarcoma				
Rhabdomyosarcoma				
Angiosarcoma				
Malignant hemangiopericytoma				
Synovial sarcoma	-			
Malignant mesothelioma				
Malignant PNST	-			
Neuroblastoma				
Ganglioneuroblastoma				
Extraskeletal chondrosarcoma				
Myxoid chondrosarcoma				
Mesenchymal chondrosarcoma				
Extraskeletal osteosarcoma				
Malignant granular cell tumor				
Alveolar soft part sarcoma				
Epithelioid sarcoma				
Clear cell sarcoma				
Extraskeletal Ewing sarcoma/PNET				

GRADING-ST SARCOMAS

GRADING SYSTEM SOFT TISSUE SARCOMAS (FFCC)				
	Score (1-3)			
TUMOR DIFFERENTIATION				
well diff	1			
defined histogenetic types	2			
poorly diff & undef histogenesis	3			
MITOTIC COUNT				
0-9/10HPF	1			
10-19/HPF	2			
>20 HPF	3			
TUMOR NECROSIS				
none	0			
<50%	1			
>50%	2			
HISTOLOGIC GRADE	Sum of scores			
1	2 or 3			
2	4 or 5			
3	6, 7 or 8			

GRADING-ST SARCOMAS

DIFFERENTIATION SCORE 1

Well differentiated sarcoma (fibro-, lipo-, leiomyo-, chondro-)

Well differentiated MPNST (neurofibroma with malignant transformation)

DIFFERENTIATION SCORE 2

Conventional fibrosarcoma, leiomyosarcoma, angiosarcoma

Conventional MPNST

Myxoid sarcomas (MFH, liposarcoma, chondrosarcoma)

Storiform-pleomorphic MFH

DIFFERENTIATION SCORE 3

Sarcomas of undefined histog. (ASPS, SS,ES,CCS, undiff. Sarc., malig. rhabdoid tumor)

Ewing family of tumors

Pleomorphic sarcomas (lipo-, leio-)

Round cell and pleomorphic liposarcoma

Rhabdomyosarcoma (except botryoid and spindle cell)

Poorly differentiated angiosarcoma

Triton tumor, epithelioid MPNST

Extraskeletal mesenchymal CS, and osteosarcoma

Giant-cell and inflammatory MFH

STAGING

- The stage is an estimate of the extent or dissemination of a tumor (and in the current systems includes tumor grade).
- Staging is important for planning of treatment and prognostication.
- Clinical data and imaging studies are part of staging process
- (Visceral sarcomas excluded)

	STAGING (G-TNM)- ST SARCOMAS					
STAGE	GRADE	PRIMARY TUMOR	LYMPH NODES	METASTASIS		
I - IV	LOW OR HIGH	T1 (<5 CM) OR T2 (>5 CM)	NEG/POS	ABSENT/PRE SENT		
IA	LOW	T1a or T1b	NEGATIVE	ABSENT		
IB	LOW	T2a or T2b	NEGATIVE	ABSENT		
IIA	HIGH	T1a or T1b	NEGATIVE	ABSENT		
IIB	HIGH	T2a	NEGATIVE	ABSENT		
101	HIGH	T2b	NEGATIVE	ABSENT		
IV	ANY	ANY	POSITIVE	ABSENT		
	ANY	ANY	POSITIVE OR NEGATIVE	PRESENT		

[&]quot;b" deep tumors of trunk and extremities or intra-abdominal, intra-thoracic or retro-peritoneal

STAGING OF ST SARCOMAS

5-yr survival	
Stage	%
I	86
II	72
Ш	52
IV	10-20

NEJM 2005; 353: 701-711

BONE SARCOMAS

- Like ST sarcomas, bone sarcomas need to be graded (grading is an important element of the staging and determines if the tumor is stage I or II).
- The TNM system for bone sarcomas follows a 2 tier grading system: lowand high-grade.

BONE TUMORS

 The staging of bone sarcomas follows the TNM system.

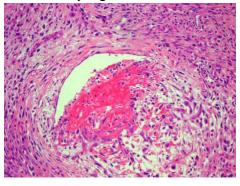
Primary tumor (T)	TX	Primary tumor cannot be assessed
	T0	No evidence of primary tumor
	T1	Tumor less or equal to 8 cm in greatest dimension
	T2	Tumor equal or more than 8 cm in greatest dimension
	Т3	Discontinuous tumors in the primary bone site
Regional lymph nodes (N)	NX	Regional lymph nodes cannot be assessed
	NO	No regional lymph node metastasis
	N1	Regional lymph node metastasis
Distant metastases (M)	MX	Distant metastasis cannot be assessed
	MO	No distant metastasis
	M1	Distant metastasis:
		M1a: lung
		M1b: other sites

AJCC Cancer Staging Manual, 6th Edition, Springer, New York

BONE TUMORS

Stage IA	T1	NO, NX	MO	Low grade
Stage IB	T2	NO, NX	MO	Low grade
Stage IIA	T1	NO, NX	MO	High grade
Stage IIB	T2	NO, NX	MO	High grade
Stage III	T3	NO, NX	MO	Any grade
Stage IVA	Any T	NO, NX	M1a	Any grade
Stage IVB	Any T	N1	Any M	Any grade
	Any T	Any N	M1b	Any grade

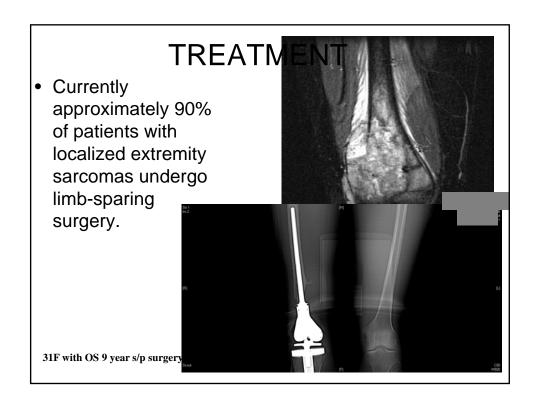
AJCC Cancer Staging Manual, 6th Edition, Springer, New York


BONE TUMORS

- Stage I: low grade intra-compartmental (risk of metastasis <25%)
- Stage II: high-grade extra-compartmental (risk of metastasis >25%)
- Stage III: any grade, discontinuous tumor in the primary bone site
- Stage IV: any grade, metastatic

PARAMETERS TO BE INCLUDED IN REPORT OF A SARCOMA

- FINAL REPORT
 - 1. Tumor site, type of excision
 - 2. Depth of the tumor
 - 3. Tumor type and variant
 - 4. Grade (if possible)
 - 5. Tumor size
 - 6. Status of margins & L.N.
 - 7. Percent of necrosis
 - 8. Vascular invasion,


- ADDENDUM REPORT(S)
 - 1. Immunohistochemistry
 - 2. Electron microscopy
 - 3. Cytogenetics

TREATMENT

- Surgery and pre- or postoperative external beam radiation treatment in the primary local treatment for most patients with localized disease.
- Adjuvant chemotherapy is usually reserved for patient with high-grade sarcomas.
- Patients with metastatic disease considered for chemotherapy and selected cases may undergo metastasectomy.

