Emily DiMango, MD
Asthma II

Director
John Edsall/John Wood Asthma Center
Columbia University Medical Center

Figure 1
Asthma Prevalence, 1980-2000

* Gap between 1995-1996 and 1997 indicates a break in trend due to the redesign of the 1997 NHIS.
Asthma in the US

- 6% of the population (17 million)
- Most common cause of hospitalization among children
- Higher prevalence in some areas
- 5,000 deaths per year.
- Undertreated

Comparison of Asthma Hospitalization Rates in Children Aged 0-14 in the U.S., NYS and NYC, 1999

- US: 3.25
- NYS (not incl. NYC): 2.09
- NYC: 7.94

HP 2000 Goal: 2.25/1,000
Risk factors for development of asthma

- Family history
- Sensitization to common allergens
- Maternal smoking
- Obesity
- Western lifestyle

- ?? Diet, pollution
Protective associations

- Cat and dog exposure in early life (protects against all allergen sensitization)
- Exposure to farm animals in early life (endotoxin)
- Day care in first 6 months of life
- Multiple siblings

Ownby, et al. JAMA 2002
Braun-Fahrlander, et al. NEJM 2002

Percentage of Children with Asthma According to the Number of Older Siblings and the Age at Entry into Day Care

Table 1. Percentage of Children with Asthma According to the Number of Older Siblings and the Age at Entry into Day Care.

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. of Children*</th>
<th>Asthma</th>
<th>Relative Risk (95% CI)†</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of older siblings‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>405</td>
<td>21</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>385</td>
<td>19</td>
<td>0.9 (0.7–1.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>176</td>
<td>14</td>
<td>0.7 (0.5–1.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>≥3</td>
<td>69</td>
<td>13</td>
<td>0.6 (0.4–1.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Age at entry into day care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>12 mo</td>
<td>899</td>
<td>19</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>7–12 mo</td>
<td>28</td>
<td>18</td>
<td>0.9 (0.4–2.1)</td>
<td>0.88</td>
</tr>
<tr>
<td>Birth to 6 mo</td>
<td>69</td>
<td>9</td>
<td>0.4 (0.2–1.0)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Ball M NEJM 2000
Effect of Endotoxin exposure on wheeze

Asthma Definition

- Chronic inflammatory disorder of the airways
- Usually associated with atopy (extrinsic, intrinsic)
- Obstruction to airflow which is reversible (either spontaneously or with use of medications)
- Airway hyperresponsiveness and narrowing in response to a variety of stimuli
Asthma: A Lung Disease with Airway

- Obstruction (at least partially reversible)
- Hyperreactivity
- Inflammation

Normal Bronchiole

Asthma

Mast cells
Bronchospasm
Edema (and mucus)
Eosinophils
Lymphocytes

Busse, W, NEJM 2001; 344: 5
Airway Inflammatory Changes

Airway inflammation - Early and late Response

Triggers
Mast cells

Mediators
Leukotrienes
Histamine
Prostaglandins
Platelet activating factor
Enzymes
Cytokines

Lymphocytes
Eosinophils
 Diagnostic Criteria For Asthma

• Cough, dyspnea, wheeze, chest tightness
• Waxing and waning symptoms
• Heightened airway reactivity – exacerbations upon exposure to stimuli
• Episodic airflow limitation in response to antigenic triggers.
Physiologic features of asthma

• Reversible airflow limitation (obstructive defect) with a significant (>12%) change in FEV1 in response to inhaled bronchodilator.

• response to bronchoprovocation testing - challenge with agent (histamine, cold air) which provokes bronchial narrowing (decrease of 20% in FEV1) in sensitive individuals. (Clinical trials, professional athletes)
Methods For Measuring Airway Caliber
Asthma exacerbation

- Asthma trigger leads to bronchoconstriction and increase in airway inflammation–narrowing of airway lumen
- Increased resistance to airflow
- Reduction in FEV1, PEFR
- Will reverse either spontaneously (eventually) or with use of medication

Contributing Factors to Asthma Exacerbation

- Poorly controlled airway inflammation
- Cold air
- Exercise
- Upper respiratory tract infection
- sinusitis, rhinitis, GERD
- First or second hand tobacco smoke
- environmental allergens – indoor and outdoor
Asthma Triggers

Seasonal Patterns in Viral Infection and Asthma Exacerbation

Hospital Admissions 1989-1990

No. of Respiratory Infections in a Cohort of Schoolchildren

No. of Hospital Admissions for Asthma in Children (<20 y)

*In Wessex Regional Health Authority.
Gas exchange abnormalities in acute asthma exacerbation

- Low V/Q leads to hypoxemia
- Increased ventilatory drive leads to reduction in pCO2.
- As severity of airflow obstruction increases, respiratory muscle fatigue develops and pCO2 “pseudo-normalizes” then becomes elevated.

Physical Examination

Physical examination of the chest may be normal.

- Wheezing or prolonged force expiration
 - may not correlate with obstruction
- Hyperinflation of the lungs
- Use of accessory muscles
Pathologic targets in asthma

- Bronchial smooth muscle
- Airway inflammatory cells
- Inflammatory cytokines
- Bronchial epithelium
- Bronchial blood vessels (anti-VLA-4)

Reliever vs. controller medications

Reliever medications
- Short acting bronchodilators

Controller medications
- Inhaled corticosteroids
- Leukotriene modifiers
- Theophylline
- Cromolyn
- Long acting bronchodilators
β₂-agonists (Albuterol)

- Bind to β₂ receptors on airway smooth muscle cells, cause relaxation of muscle and bronchial dilatation
- Most effective bronchodilators available, short term relief of bronchoconstriction
- Rapid onset of activity; duration of action 3-6 hours.
- “rescue” therapy for symptom relief
- No effect on chronic inflammation

Side effects of β₂ agonists

- Due to non-airway β₂ activity: skeletal muscle tremor
- Due to overlap β₁ activity: tachycardia, arrhythmia, hypokalemia
- Excessive use related to higher mortality and morbidity – may be marker for more severe disease/airway inflammation
- Possible tachyphylaxis – mild downregulation of cell surface receptor number and desensitization of the receptor to drug – not clinically significant.
Effect of polymorphisms at the amino acid residue 16 locus of the B\textsubscript{2} adrenergic receptor

Glucocorticoids (Steroids)

- Most effective anti-inflammatory agent for treatment of persistent asthma
- Reduce influx of inflammatory cells into the airways (eosinophils, lymphs)
- Reduce production of pro-inflammatory cytokines by airway epithelial cells
- Reduce airway edema and mucus production
- May reduce airway remodeling
Inhaled glucocorticoids

- First line therapy for all but very mild asthma
- Early initiation of therapy may preserve lung function over long term

Side effects of inhaled steroids

- Thrush and dysphonia are local effects

- Potential systemic effects: growth retardation, adrenal suppression, osteoporosis, cataracts, acne, skin fragility with high doses.
Early initiation of inhaled corticosteroids preserves lung function

Leukotrienes in Asthma

- Chemoattractant for eosinophils
- Smooth muscle contraction
- Vascular permeability
- Enhanced mucus production
- Can block by leukotriene synthesis inhibitors or receptor antagonists (oral agents)
Long acting beta agonists

- Inhaled salmeterol (component of Advair®) and formoterol
- Duration of action 12 hours, bid drug
- Delayed onset of action (30 minutes)
- Efficacious in moderate to severe asthma
- Allow reduction of inhaled steroid dose
- **Not monotherapy**; ie use only as add on therapy to anti inflammatory agents – avoid masking of inflammation

- New black box warning: Increased mortality and serious events in some patients taking long acting beta agonists, particularly African Americans
Effect of Salmeterol added to low dose inhaled steroids

Mean Change in FEV$_1$ from Baseline (L)

- Salmeterol + BDP 168
- BDP 336

*P ≤ 0.05 vs BDP 336 mcg
*P ≤ 0.001 vs baseline
Baseline FEV$_1$
Salmeterol + BDP 168 = 2.30 L
BDP 336 = 2.31 L

Adapted from J. Murray, Allergy and Asthma Proc. 1999;20:173-180.

Occurrence of asthma-related deaths by phase and study year

Anticholinergic Drugs
(Ipratropium Bromide)

- Block muscarinic receptors on airway smooth muscle
- Inhibit bronchoconstriction caused by cholinergic nerves, no action against the direct effects of mediators on airway smooth muscle
- Slower onset of action; reduced efficacy compared with b_2 agonists
- Additive when used in combination with b_2 agonists

theophylline

- Phosphodiesterase inhibitor – increases intracellular cAMP in inflammatory cells
- Anti-inflammatory and bronchodilator properties
- Additive therapy when not adequately controlled with inhaled steroids
- Therapeutic ratio limits use; better agents available; more selective agents under study
Biologics in treatment of asthma

• Targeted toward specific mediators
• Anti-IL5 tested, not efficacious
• Monoclonal Ab-IgE is first compound commercially available.
• Expensive

Monoclonal Ab – IgE (omalizumab, xolair®)

• Approved for treatment of moderate and severe asthma only in atopic asthma
• Effective in reducing asthma exacerbation rate and reducing required corticosteroid dose
• Subcutaneous injections 1-2x/month
Effect of anti-IgE on corticosteroid dose in severe asthmatics

Treatment of acute asthma exacerbation

- High dose b_2 agonist (inhaled, SQ, IV)
- Nebulized anticholinergics
- epinephrine
- Corticosteroids
- Oxygen
- Mechanical ventilation
Assessment of asthma severity during office visits

- Nocturnal awakenings from asthma symptoms
- Days per week with symptoms
- Need for rescue bronchodilators
- Activity limitation because of asthma
NAEPP (2002) Guidelines for Asthma Severity classification

- **Mild intermittent**: symptoms < 2x/week, nocturnal symptoms < 2x/month, normal FEV1
- **Mild persistent**: symptoms 3-6x/week, 3-4 awakenings/month, normal FEV1
- **Moderate persistent**: daily symptoms, >5 nocturnal awakenings/month, FEV1 60-80%
- **Severe persistent**: continual symptoms, FEV1 < 60%

Long term control of asthma

- **Symptoms occurring more than twice per week** is an indication for **daily anti-inflammatory therapy**.
- Step up anti-inflammatory therapy based on need for bronchodilators and frequency of symptoms
- Can use leukotriene modifiers and long acting b-agonist as steroid sparing agents.
Asthma which is difficult to control

- Observe inhaler technique
- Other diagnoses
- Adherence to regimen
- Reflux or sinusitis present
- Sensitivity to medication (NSAIDS, food additives)
- Abuse of OTC inhalers
- Environmental stimulus – mold, smoking

Future Goals

- Pharmacogenetics
- Identification of genes responsible for disease
- Biologics (monoclonal blocking antibodies)
- Th2/Th1 balance - vaccines
- Reduce racial disparities in asthma morbidity and mortality
No Limits
Play
Work
Live
Control Your Asthma
Reach New Heights
IN WASHINGTON HEIGHTS

Columbia University Asthma Coalition
[212] 305-0631