Pulmonary Function Tests

- “Dynamic function”: obstructive defects
- “Static function”: restrictive defects
- Diffusion abnormalities (gas exchange)

Spirometry and Maximal Expiratory and Inspiratory Flow Volume Curves
- “Dynamic function”
Obstructive Ventilation: Expiratory
- Decrease in expiratory airflow (volume and/or rate of flow)
- FEV1 decreased
- FVC normal or decreased
- FEV1/FVC decreased*
- FEF25-75 decreased

*definition of obstructive defect

Types of Airflow Obstruction
- Bronchoconstriction
- Dynamic airway compression (FVC vs SVC). Emphysema: FVC < slow or inspiratory VC, and plethysmographic volumes greater than gas dilution volumes
- Upper Airway
- Small Airways
- “Mixed”
Lung Volumes

- “Static function”
- Gas Equilibration (“wash in” and “wash out”)
- Body plethysmography

Gas Equilibration Lung Volumes

- “Wash in:” Helium (insoluble gas) breathed from a reservoir of known VOLUME and CONCENTRATION, thus diluting its concentration by the volume of the lungs
 \[V_{FRC} = V_{reservoir} \times \frac{\text{Conc init} - \text{Conc final}}{\text{Conc final}} \]

- “Wash out:” Lung gas (N2) washed out during breathing of 100% O2
 Initial N2 concentration known (atmospheric); volume and N2 concentration of expired gas measured
 \[V_{FRC} = V_{exp} \times \text{conc exp}^{0.79} \times \text{conc ALV} \text{ (final)} \]
Plethysmographic Lung Volumes
- $P_{V1}=P_{V2}$ in a closed system at same temperature
- Lungs and airway closed system when occluded
- Panting at FRC: inhalation=decreased intrathoracic pressure, increased volume

$V_{FRC}=V / \Delta P (P_{FRC}-\Delta P)$ where ΔP is negligible c/w P_{FRC}

$V_{FRC}=\Delta V / \Delta P (P_{FRC})$

ΔP obtained from change in mouth pressure against occluded valve

ΔV obtained from change in pressure in the plethysmograph as air in the box is compressed by increase in lung volume

Restrictive Ventilation
- A decrease in lung expansion
- FEV1 decreased
- FVC decreased
- FEV1/FVC normal or increased
- Total Lung Capacity (TLC) decreased*

* Definition of restrictive ventilatory defect

Restrictive patterns
- Diffuse parenchymal disease, thoracic cage restriction: symmetric decrease in TLC, VC, FRC, RV
- Neuromuscular weakness: IC mainly decreased; TLC and VC decreased and FRC and RV spared
Diffusing Capacity for CO (DL\textsubscript{CO})

- $DL_{CO} = \frac{CO \text{ rate of uptake (ml/min)}}{\Delta PCO (mmHg)}$
- O\textsubscript{2} and CO combine with Hgb; therefore reflect properties of alveolar-capillary membrane, and its uptake therefore limited by resistance across this interface
- Soluble gases limited by pulmonary blood flow
- 2 major resistances therefore: membrane properties, and molecular conformation properties of Hgb binding
- Diffusion determinants: Gas gradient, solubility, hemoglobin, membrane thickness, surface area

SB Diffusing Capacity for CO (DL\textsubscript{CO})

- Inspirate 0.25% CO, 10% inert gas, 21%O\textsubscript{2}, balance N\textsubscript{2}
- Expire to RV; inhale rapidly to TLC; hold for remainder of 10 seconds of breath hold time (BHT)
- Expire; discard anatomic dead space gas; sample 500-1000 ml alveolar gas

Diffusing Capacity

- Increased in alveolar hemorrhage, obesity, asthma??
- Decreased in emphysema (destruction and/or non-equilibration), restrictive disorders (all:why??), pulmonary vascular disorders, anemia, abnormal Hgb
- Single breath (10 sec) vs steady state/rebreath techniques

DLCO Pearl

- Isolated DLCO decrease: suspect pulmonary vascular disorder
- Or, interstitial disorder not yet, or no longer, affecting parenchymal volume
- Or, abnormality of Hgb (eg, anemia, carboxyhgb, methhgb)

Pre-operative Pulmonary Assessment: PFTs

- Complications: highest for thoracic and upper abdominal (ie, near the diaphragm)
- All having lung resection, orthopedic and lower abdominal with lung disease, or smoking
- Age>60 years

Pre-operative Pulmonary Assessment: PFTs

- Spirometry: FEV\textsubscript{1} or FVC <70%, FEV\textsubscript{1}/FVC<65%
- PaCO\textsubscript{2}>45 mmHg in COPD
- None contraindicate
- Lung resection: FEV\textsubscript{1} best for pulmonary reserve and post op complications; post op FEV\textsubscript{1} <30% predicted=increased long term mortality and immediate post op problems
Pre-operative Pulmonary Assessment: PFTs
- DLCO <40%, PaCO2>45 mmHg specific risk factors
- VO2 max <20 mL/kg/min excessive mortality
- Does not apply to LVRS: should have TLC >/=110%, RV>220%, FEV1</=45%, DLCO</=70%

PFT Summary
- Obstructive ventilatory defect: decreased FEV1/FVC
- Restrictive ventilatory defect: decreased TLC
- Low DLCO: abnormal uptake of gas by Hgb across alveolar capillary membrane: Diffusion determinants= Gas gradient, solubility, hemoglobin, membrane thickness, surface area
- Disorders with airway dysequilibration (emphysema): gas dilution will underestimate lung volumes (and ? DLCO)

Series “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi. General considerations for lung function testing
Eur Respir J 2005; 26: 153–161