Acute Respiratory Failure

Phil Factor, D.O.
Associate Professor of Medicine
Pulmonary, Allergy, and Critical Care Medicine
Director, Medical Intensive Care Unit
Columbia University Medical Center

Acute Respiratory Failure

Physiologic Classification

,	•			
	Type 1 Hypoxemic	Type 2 Hypercarbic	Type 3 Post-op	Type 4 Shock
Mechanism	Shunt	↓Va	Atelectasis	↓ Cardiac Output
Etiology	Airspace Flooding	Increased Respiratory load, Decreased ventilatory drive	Decreased FRC and increased Closing Volume	Decreased FRC and increased Closing Volume
Clinical Setting	Water, Blood or Pus filling alveoli	CNS depression, Bronchospasm, Stiff respiratory system, respiratory muscle failure	Abdominal surgery, poor insp effort, obesity	Sepsis, MI, acute hemorrhage

Respiratory Failure

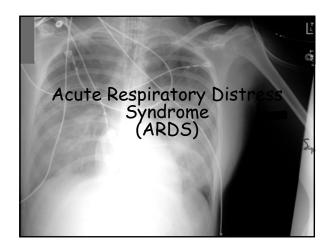
Physiologic Definition:

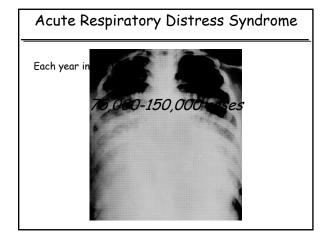
Inability of the lungs to meet the metabolic demands of the body

Can't take in enough ${\cal O}_2$ or Can't eliminate ${\cal CO}_2$ fast enough to keep up with production

Ventilatory Failure

Inbalance between load on the lungs and the ability of bellows to compensate


Respiratory Failure


- Failure of Oxygenation: P_aO₂<60 mmHg
- Failure of Ventilation*: PaCO2>50 mmHg

 $^{\star}\mathrm{P_{a}CO_{2}}$ is directly proportional to alveolar minute ventilation

Acute Hypoxemic Respiratory Failure

- Shunt disease intracardiac or intrapulmonary
- Severe V/Q mismatch asthma, PE
- Venous admixture due to low cardiac output states, severe anemia coupled with shunt and/or V/Q mismatch

Acute Respiratory Distress Syndrome (ARDS)

Leaky alveolar capillaries

Plasma fluid and leukocytes leak into the airspace

Shunt

Hypoxemia

Causes of ARDS

DIRECT LUNG INJURY

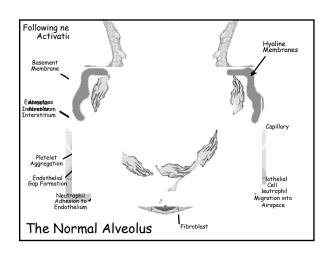
Pneumonia
Aspiration of gastric contents
Pulmonary contusion
Near-drowning
Inhalation injury (Cl-, smoke)
Reperfusion pulmonary edema
after lung transplantation or
pulmonary embolectomy

INDIRECT LUNG INJURY

Non-pulmonary sepsis/SIRS Severe trauma with shock Cardiopulmonary bypass Drug overdose (Narcotics) Acute pancreatitis Transfusion (TRALI) Drug reaction (ARA-C, nitrofurantoin) fat/air/amniotic fluid embolism,bypass

Acute Respiratory Distress Syndrome (ARDS)

American-European Consensus Definition:*

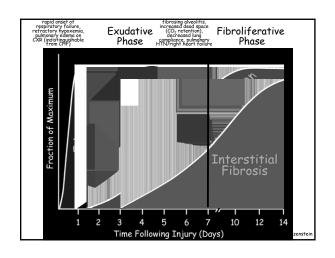

- Refractory hypoxemia

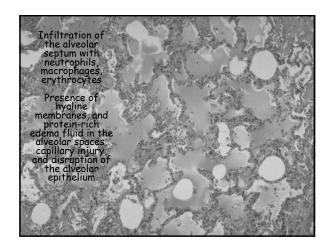
 PaO2/FTO2 (P/F ratio)

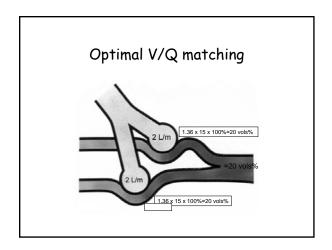
 <300 for ALI

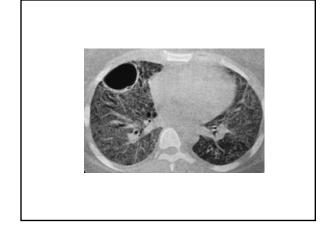
 <200 for ARDS
- A disease process likely to be associated with ARDS
- No evidence of elevated left atrial pressure elevation (by clinical exam, echo or PA catheter)
- · Bilateral airspace filling disease on X-ray

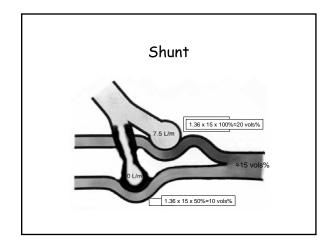
Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee.

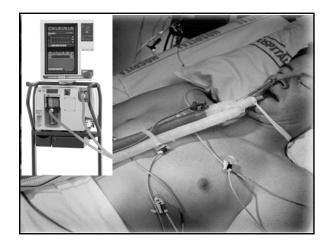



ARDS

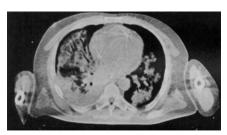

Fundamental Pathophysiology:


<u>Increased alveolar permeability</u> due to direct neutrophil-mediated injury to the alveolar epithelium


Not a distinct disease - rather a sequelae of activation of lung and systemic inflammatory pathways



Severe Hypoxemia



Therapeutic Goals

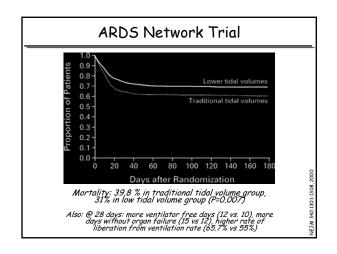
Maintain reasonable oxygen delivery

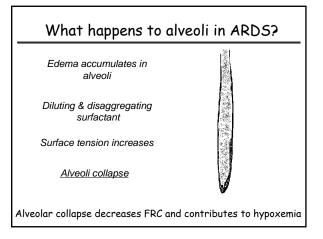
Find & fix the primary cause

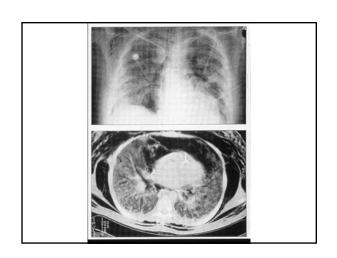
"Baby Lungs"

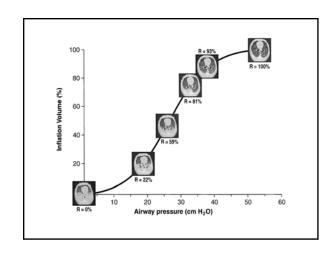
FRC can be reduced by 80% or more in ARDS

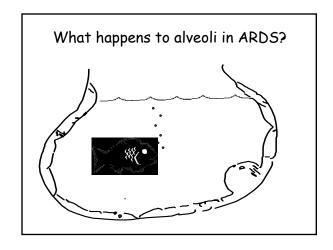
Gattinoni, et. al. Anesthesiology, 74:15-23, 1991.




ARDS Network Trial


Day 1 Ventilatory Characteristics


	Low V _t Group n=432	Traditional V _t Group n=429
V ₊ :	6.2 ± 0.9	11.8 ± 0.8
PEEP:	9.4 ± 3.6	8.6 ± 3.6
F _i O ₂ :	0.56 ± 0.19	0.51 ± 0.17
P _{plat} :	25.7 ± 7	33 ± 9
P' _{peak} :	32.8 ± 8	39 ± 10
P_aO_2/F_iO_2 :	158 ± 73	176 ± 76
P_aCO_2 :	40 ± 10	35 ± 8
pH:	7.38 ± 0.08	7.41 ± 0.07


NEJM 342:1301-1308, 2000

Positive End-Expiratory Pressure (PEEP)

- Beneficial Effects
 Increases FRC, CI, PaO2
 Recruits Atelectatic Units

 - Decreases Qs/Qt
 Allows Reduction in F_iO₂
- Detrimental Effects
 - Volutrauma
 - · Alveolar Overdistention
 - Hemodynamic Derangements

PFFP

- Oxygen is:
 A) good for you
 B) bad for you
 C) all of the above

 $F_{\tau}O_{\gamma}$ 0.6 for 24 hours or more may cause lung injury

PEEP recruits collapsed alveoli, improves FRC and improves oxygenation

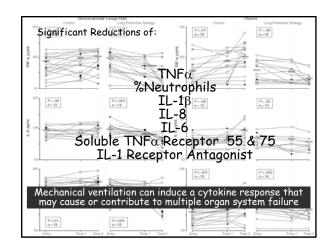
An essential therapy for patients with ARDS

Does Mechanical Ventilation Contribute to MSOF?

Ranieri, et al.*: randomized prospective study of the effects of mechanical ventilation on bronchoalveolar lavage fluid and plasma cytokines in patients with ARDS (primarily non-pulmonary causes).

Controls (n=19): Rate 10-15 bpm, V, targeted to maintain PaCO₂ 35-40 mmHg (mean: 11 ml/kg), PEEP titrated to SaO₂ (mean: 6.5), P_{plat} maintained <35 cmH₂O

Lung protective ventilation (n=18): Rate 10-15 bpm, V, targeted to keep P_{plat} less than upper inflexion point (mean: 7 ml/kg), PEEP 2-3 cmH₂O above LIP (mean: 14.8)


Plasma and BALF levels of Il-1ß, IL-6, IL-8, TNFa, TNFa-sr 55, TNFa-sr 75, IL-1ra, measured within 8 hrs of intubation and again @24-30 hours & 36-40 hours after entry

*Ranieri, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial, JAMA 282:54-61, 1999.

ARDS Network Trial

The standard of care

Assist Control V_t 6 cc/kg ideal body weight PEEP of ≈8-10

Cause of Death in ARDS Patients?

Generally not due to respiratory failure

The lung is not just an innocent bystander - it functions as an immunomodulatory organ that may participate in the systemic inflammatory response that leads to multiple organ system dysfunction syndrome

Biotrauma

Goals for Management of ARDS

The American-European Consensus Conference on ARDS, Part 2

- Ensure appropriate O_2 delivery to vital
- Minimize oxygen toxicity/tolerate mediocre ABG's
 Reduce edema accumulation

- Minimize airway pressures
 Prevent atelectasis/Recruit alveoli
 Use sedation and paralysis judiciously

Am J Resp Crit Care Med 157:1332-47, 1998

Survival from "pure" ARDS

1979: 20-50%

2002: 50-90%