

Respiratory Failure

Physiologic Definition:

Inability of the lungs to meet the metabolic demands of the body

Can't take in enough O₂ or Can't eliminate CO₂ fast enough to keep up with production

Respiratory Failure

- Failure of Oxygenation: P_aO_2 <60 mmHg
- Failure of Ventilation*: P_aCO₂>50 mmHg

 $*P_aCO_2$ is directly proportional to alveolar minute ventilation

Acute Respiratory Failure

Physiologic Classification

	Type 1 Hypoxemic	Type 2 Hypercarbic	Type 3 Post-op	Type 4 Shock
Mechanism	Shunt	Va	Atelectasis	↓ Cardiac Output
Etiology	Airspace Flooding	Increased Respiratory load, Decreased ventilatory drive	Decreased FRC and increased Closing Volume	Decreased FRC and increased Closing Volume
Clinical Setting	Water, Blood or Pus filling alveoli	CNS depression, Bronchospasm, Stiff respiratory system, respiratory muscle failure	Abdominal surgery, poor insp effort, obesity	Sepsis, MI, acute hemorrhage

Acute Respiratory Distress Syndrome (ARDS)

Leaky alveolar capillaries

Plasma fluid and leukocytes leak into the airspace

Shunt

Hypoxemia

Acute Respiratory Distress Syndrome (ARDS)

American-European Consensus Definition:*

- Refractory hypoxemia
 P_aO₂/F_IO₂ (P/F ratio)
 <300 for ALI</p>
 <200 for ARDS</p>
- A disease process likely to be associated with
- ARDS
 No evidence of elevated left atrial pressure elevation (by clinical exam, echo or PA catheter)
 Bilateral airspace filling disease on X-ray

Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee.

Causes of ARDS

DIRECT LUNG INJURY

Pneumonia Aspiration of gastric contents Pulmonary contusion Near-drowning Inhalation injury (Cl⁻, smoke) Reperfusion pulmonary edema after lung transplantation or pulmonary embolectomy

INDIRECT LUNG INJURY

Non-pulmonary sepsis/SIRS Severe trauma with shock Cardiopulmonary bypass Drug overdose (Narcotics) Acute pancreatitis Transfusion (TRALI) Drug reaction (ARA-C, nitrofurantoin) fat/air/amniotic fluid embolism,bypass

Fundamental Pathophysiology:

<u>Increased alveolar permeability</u> due to direct neutrophil-mediated injury to the alveolar epithelium

> Not a distinct disease - rather a sequelae of activation of lung and systemic inflammatory pathways

Therapeutic Goals

Maintain reasonable oxygen delivery

Find & fix the primary cause

ARDS Network Trial					
Day 1 Ventilatory Characteristics					
	Low V ₊ Group n=432	Traditional V _t Group n=429			
	6.2 ± 0.9	11.8 ± 0.8			
	9.4 ± 3.6	8.6 ± 3.6			
	0.56 ± 0.19	0.91 ± 0.17			
plat' D	20.7 ± 7	33 I 9 20 I 10			
POZE	158 + 73	176 + 76			
$P CO_{a}$	40 + 10	35 + 8			
pH:	7.38 ± 0.08	7.41 ± 0.07			
		NEJM 342:1301-1308, 2000			

What happens to alveoli in ARDS?

Positive End-Expiratory Pressure (PEEP)

- Beneficial Effects

 - Increases FRC, CI, P_aO₂
 Recruits Atelectatic Units

 - Decreases Qs/Qt
 Allows Reduction in F₁O₂
- Detrimental Effects
 - Volutrauma
 - Alveolar Overdistention
 - Hemodynamic Derangements

Generally not due to respiratory failure

Does Mechanical Ventilation Contribute to MSOF?

Ranieri, et al.*: randomized prospective study of the effects of mechanical ventilation on bronchoalveolar lavage fluid and plasma cytokines in patients with ARDS (primarily non-pulmonary causes).

Controls (n=19): Rate 10-15 bpm, V_t targeted to maintain PaCO₂ 35-40 mmHg (mean: 11 ml/kg), PEEP titrated to SaO₂ (mean: 6.5), P_{plat} maintained <35 cmH₂O

Lung protective ventilation (n=18): Rate 10-15 bpm, V_t targeted to keep P_{plat} less than upper inflexion point (mean: 7 ml/kg), PEEP 2-3 cmH₂O above LIP (mean: 14.8)

Plasma and BALF levels of Il-1 β , IL-6, IL-8, TNF α , TNF α -sr 55, TNF α -sr 75, IL-1ra, measured within 8 hrs of intubation and again @24-30 hours & 36-40 hours after entry

*Ranieri, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54-61, 1999.

Survival from "pure" ARDS

1979: 20-50%

2002: 50-90%