Exercise Physiology

Kristin M Burkart, MD, MSc Assistant Professor of Clinical Medicine Division of Pulmonary, Allergy, & Critical Care Medicine College of Physicians & Surgeons Columbia University

Exercise and Cellular Respiration

Exercise requires the release of energy from the terminal phosphate bond of adenosine triphosphate (ATP) for the muscles to contract.

Cellular Respiration

Cellular Respiration: Mechanisms Utilized by Muscle to Generate ATP

Mechanisms for ATP generation in the muscle

- 1. Aerobic oxidation of substrates (carbohydrates and fatty acids)
- 2. The anaerobic hydrolysis of phosphocreatine (PCr)
- 3. Anaerobic glycolysis produces lactic acid

Each is critically important for normal exercise response and each has a different role

Anaerobic Hydrolysis of Phosphocreatine (PCr) to Generate ATP The Glycolytic Pathway: Uses Glycogen to Generate ATP • Provides most of the high energy phosphate needed in the early phase of exercise • Produces ATP from glycogen without the need for O₂ → results in production of lactic acid • This is used to regenerate ATP at the myofibril during early exercise • The energy produced by anaerobic glycolysis is relatively small for the amount of glycogen consumed • PCr is an immediate source of ATP regeneration • The consequence is lactate accumulation

Exercise results in increased oxygen utilization (QO₂) by muscles

- Increased extraction of O_{2} from the blood

- · Increased cardiac output
- Increase in pulmonary blood flow
 recruitment and vasodilation of pulmonary bed
- · Increase in ventilation

Oxygen Consumption (VO₂)

 VO₂ is the difference between the volume of gas inhaled and the volume of gas exhaled per unit of time

 $VO_2 = [(V_1 \times F_{IO_2}) - (V_E \times F_{EO_2})]/t$

+ VI and VE $\,$ = volumes of inhaled and exhaled gas

- t = time period of gas volume measurements
- FI_{O_2} and $FE_{O_2} = O_2$ concentration in the inhaled and mixed gas

A Reduced VO₂ Max (less than 84% predicted (L/min) or less than 30 ml/kg/min) • Oxygen transport - CO, O₂-carrying capacity of the blood • Pulmonary limitations - mechanical, gas exchange • Oxygen extraction at the tissues - tissue perfusion, tissue diffusion • Neuromuscular or musculoskeletal limitations

Decreased Exercise Capacity

Anaerobic Threshold

The VO₂ at which anaerobic metabolism contributes significantly towards the production of ATP

Anaerobic Threshold

The VO_2 at which anaerobic metabolism contributes significantly towards the production of ATP

- A non-invasive estimate of cardiovascular function
- Normal AT: > 40% of predicted max VO₂ max
- Average individual AT: 50-60% predicted VO₂ max
- Low AT (< 40% predicted max VO₂ max)
 Indicates early hypoxia of exercising muscles
 Suggests cardiovascular or pulmonary vascular limitation

Anaerobic Threshold

The VO_2 at which anaerobic metabolism contributes significantly towards the production of ATP

- AT demarcates the upper limit of a range of exercise intensities that can be accomplished almost entirely aerobically
- Work rates below AT can be sustained indefinitely
- Work rate above AT is associated with progressive decrease in exercise tolerance

- The body uses CO₂ regulation to compensate for acute metabolic acidosis
- CO₂ increases due to bicarbonate buffering of increased lactic acid production seen at high work rates (anaerobic metabolism).

$$H^+ + HCO3^- \Leftrightarrow H_2CO_3 \Leftrightarrow CO_2 + H_2O$$

• As tissue lactate production increases [H⁺] the reaction is driven to the right

Cardiovascular Responses to Dynamic Exercise

Cardiovascular Responses to Dynamic Exercise

- Increase in cardiac output (CO= HR x SV)
 Increase in heart rate (HR)
 Increase in stroke volume (SV)
- Increase in SBP
- DBP remains stable +/- decreased

Predicted Maximum Heart Rate

- Standard equation
 - Max HR = 220 age
- Alternative equation Max HR = 210 - (age x 0.65)
- Both have similar values for < 40 years old
- Standard method underestimates peak HR in older people

Oxygen Pulse(O₂ pulse)

- Oxygen pulse = VO₂ max/max HR
- Reflects the amount of oxygen extracted per heart beat
- Estimator of stroke volume (SV)*

 Modified Fick Equation: VO₂/HR = SV x C(a-v)O₂

*Assumption that at max work rate, $C(a\text{-v})O_2$ is constant, thus change in O_2 pulse represents change in SV

Abnormal Blood Pressure Responses to Dynamic Exercise

- · Abnormal patterns of SBP response to exercise
 - Fall, reduced rise, excessive rise
 - Increase to > 200 mmHg
- Most alarming → FALL in SBP
 - Indicates a potential serious cardiac limitation
 - CHF, ischemia, aortic stenosis, central venous obstruction

Alveolar-Arterial O₂ Pressure Difference P(A-a)O₂

- Difference between alveolar oxygen pressure (PAO₂) and the arterial oxygen pressure (PaO₂)
- "A-a gradient"
- Normal A-a gradient at rest
 - Normal is 4 16, usually < 10 mm Hg*</p>
 - Increases with age due to increase in V/Q mismatch
 - Age correction

*This range from ATS CPET guidelines, multiple different normal ranges exist Defer to ranges provided earlier in course

Response of A-a gradient to Dynamic exercise

- · In normal individuals
 - A-a gradient increases with exercise
 - May increase to > 20 mm Hg during exercise
- P(A-a)O₂ increased during exercise due to – V/Q mismatching
 - O₂ diffusion limitation
 - Low mixed venous $\rm O_2$
- Abnormal A-a gradients with exercise
 Greater than 35 mm Hg indicates pulmonary abnormality

What mechanism limits exercise in healthy individuals?

What mechanism limits exercise in healthy individuals?

- VE is not the limiting factor – at maximal exercise there is ample ventilatory reserve
- Pulmonary gas exchange is not the limiting factor – At maximal exercise SaO₂ and PaO₂ are near baseline
- Metabolic and contractile properties of the skeletal muscles are not the limiting factors
- Maximal exercise is limited by CARDIAC OUTPUT

What is a Cardiopulmonary Exercise Test (CPET)?

Simultaneous study of the cardiovascular and ventilatory systems response to known exercise stress via measurement of gas exchange at the airway.

Why do we perform CPETs?

- Distinguish between normal and diseased state
- Determine etiology of exercise intolerance
 Isolate system(s) responsible for the patient's symptoms
- Assess severity of disease
- · Assess the effect of therapy
- · Pre-operative assessment of thoracotomy

What physiologic parameters are obtained during a CPET?

- VO₂ max (maximum oxygen consumption)
- Continuous electrocardiogram (ECG), HR
- BP measurements every 1-2 minutes
- Continuous SaO₂ (arterial O₂ saturation)
- Maximum minute ventilation (VE max)
- O₂ pulse (calculated)

Two Key Values Obtained During a CPET

Oxygen Consumption (VO₂)

Anaerobic Threshold (AT)

