Interstitial Lung Disease 2008

Paul F. Simonelli, MD, PhD, FCCP

Clinical Director Center for Interstitial Lung Disease Jo-Ann LeBuhn Center for Chest Disease Columbia University Medical Center

ILD: Definition

- 1. ILD is not one disorder
- 2. Strictly speaking, an ILD involves the interstitium. Anatomic structures other than the interstitium can be involved:

"alveolitis" "vasculitis" "peri-bronchial disease"

What Conditions Belong to "ILD"?

- 1. Diffuse abnormalities on chest radiology "Diffuse Parenchymal Lung Disease" (DPLD) is the more general and preferred term.
- 2. Similar clinical presentations
- 3. Similar physiological consequences
- 4. Generally, chronic non-infectious, non-neoplastic disease involving the lung parenchyma including the interstitium.

ILD: Thickening of the Interstitium

ILD: Thickening of the Interstitium

ILD: Cellular and Fibrotic

Slides Courtesy of Alain Borczuk, MD

COMPARATIVE MORTALITY RATES

DISEASE

Lung Cancer IPF (UIP) CHF Colorectal Cancer Breast Cancer Prostate Cancer

5-YEAR MORTALITY

85% 50-70% 50% 38% 13% 2%

ALE <u>FEMAL</u> .8 0.6 .2 2.2 .1 11.6
.2 2.2
.2 2.2
1 116
. I II.O
.2 13.2
.1 14.3
.3 8.8
(per 100,000/year

Am J Respir Crit Care Med 1994; 150: 967-972,

ILD: CLINICAL HISTORY

- Insidious onset
- Preceding URI
- •Occupational Exposure and Cigarette Smoking
- •Progressive Dyspnea with Exertion (DOE)
- •Paroxysmal cough

ILD: PHYSICAL FINDINGS

- •Tachypnea
- •Basilar crackles
- •May have digital clubbing
- •Low lung volume, cyanosis, tachycardia

ILD: PHYSIOLOGIC FINDINGS

- Pulmonary function
 - Restrictive ventilatory defect
 - Reduced total lung capacity (TLC) & FVC
 - Normal or increased FEV₁/FVC ratio

Adapted from ATS/ERS. Am J Respir Crit Care Med. 2000;161:646-664.

Examples:

	<u>Obstructive</u>	Restrictive	<u>Normal</u>
FVC	100%	50%	>70%
FEV1	50%	50%	>80%
FEV1/FVC	43%	90%	>70%
TLC	100%	65%	>80%
RV	105%	60%	
FRC	95%	55%	
DICO	50%	50%	>80%

ILD: PHYSIOLOGIC FINDINGS

- Pulmonary function
 - Impaired gas exchange
 - Desaturation with exercise (pulse oxymetry)
 - Decreased Pa₀₂
 - Increased A-a gradient
 - Decreased DL_{co}

Adapted from ATS/ERS. Am J Respir Crit Care Med. 2000;161:646-664.

Six Minute Walk Testing in ILD

Patient encouraged to walk at a maximal pace with as many stops as necessary

Oxygenation (desaturation) and symptom scores are measured

Desaturation may occur in other conditions Pulmonary hypertension Severe COPD Heart failure

Six Minute Walk Testing in ILD

Primary end-point is distance walked

6MWT distance is often used as an endpoint in clinical trials for ILD therapy

Degree of desaturation may have prognostic significance

Desaturation during initial 6MWT predicts decreased survival:			
<u>Disease</u>	<u>Desaturation</u>	4-Year Surv	<u>vival</u>
UIP (IPF)	Yes No	35% 69%	n=83, p=0.0018
NSIP	Yes	66%	
p=0.0089	No	100%	n=22,

ILD: PLAIN CHEST X-RAY

<section-header><section-header><text>

ILD: Traction Bronchiectasis

ILD: Case Presentation			
	d man with "rapidly progressive IPF" red to CUMC 1/03		
Pulm Hx:	Cigarette smoking @ 1.5 ppd, teens - 45 Pneumonia 2/02, with full recovery		
PMH:	Gout OA		
Occupatio	on: Mason		

Case Presentation: HPI

12/02:	Surgical Lung Biopsy (Lingula & SS-LLL)
12/02:	Predisone 60 mg/d (0.7 mg/kg/d)
12/02:	URI, oral antibiotics Acute decompensation Dexamethasone 30 mg/d

CASE PRESENTATION: HRCT

Case Presentation: Clinical Course

3/03:	Prednisone 25 mg/d
	Pulmonary Rehabilitation
	Less Dyspneic

- 4/03: Transplant Evaluation PA 25/13 (17) PCW (2)
- 7/03: Off Prednisone Full-time work SpO2 95 - 83% with stair climbing

Case Presentation: PFT's					
DATE: FVC FEV1 F/V	<u>1/03</u> 2.5L (59%) 2.2L (63%) 88%	<u>3/03</u> 2.6 2.3 88%	<u>4/03</u> 3.0 2.7 90%	<u>7/03</u> 3.1 2.8 90%	<u>9/03</u> 2.9 2.7 91%
TLC FRC DLCO	3.7L (61%) 2.0L (65%) 7.8L (24%)				
SpO2 (R) SpO2 (EX) 6MWT	92% 81% 1365'	89%	92% 79%	95% 83%	91%

CPET	<u>1/8/03</u>	<u>10/7/03</u>
TIME	7 min	8 min
MAX WORK	65 watts	60 watts (32%)
VO2-max	12.2 ml/min/kg (37%)	11.1 (34%)
VE/VCO2	47	51
MVV	86 L/min (58%)	124 (85%)

<section-header><image><image>

Vascular Remodeling Hypothesis Aberrant vascular remodeling supports fibrosis and may contribute to increased shunt and hypoxemia Increased angiogenesis results from imbalance of pro-angiogenic chemokines (IL-8, ENA-78) and anti-angiogenic, IFN-inducible chemokines (IP-10)

 Vascular remodeling leads to anastomoses between the systemic/pulmonary microvasculature, increasing right-to-left shunt, contributing to hypoxemia

Defects in Host Defense Mechanisms May Contribute to Fibrosis

 Defects in endogenous host defense mechanisms (eg, IFN-g, PGE2 production) that limit fibrosis after acute lung injury may contribute to progressive fibrosis

Noble PW, Homer RJ. *Clin Chest Med*. 2004;25:749-758, vii.

Center for Interstitial Lung Disease

A multi-disciplinary group at NY-Presbyterian Hospital, based in the Jo-Ann LeBuhn Center for Chest Disease

Goals:

- Diagnosis
- Monitoring disease progression
- Coordination of therapy
- Clinical trials
- Investigative research

Center for Interstitial Lung Disease

Composition of the multi-disciplinary group

Pulmonologists Lung pathologists Chest radiologists Exercise Physiologists Outside consultants Rheumatologists Transplant physicians Thoracic surgeons **Basic researchers**

Clinical coordinators Physical therapists Respiratory techs. Cardiologists (Medical Informatics)

Center for Interstitial Lung Disease

Potential system-wide goals & projects:

Data base Diagnosis, natural history, pathogenesis Diagnosis Central review of cases, clinical conferences Coordination of care Clinical trials, transplant/tertiary care **Basic research**