Asthma Immunopathogenesis and Management

Rachel L. Miller M.D., FAAAAI
Associate Professor of Medicine and Environmental Health Sciences
Program Director, Allergy and Immunology
Columbia University College of Physicians and Surgeons

Ever asthma diagnosis, US, 2005, adults*

Age-adjusted based on 2000 census
Source: CDC/NCHS/National Health Interview Survey

Ever asthma diagnosis, US, 2005, children*

Age-adjusted based on 2000 census
Source: CDC/NCHS/National Health Interview Survey

Asthma deaths, 2003*

Age-adjusted based on 2000 census
Source: CDC/NCHS/National Health Interview Survey

Between 1990-2000, asthma hospitalization decreased by 17% in NYC*, by 13% in US

NYS, BLS

NYC Childhood Asthma Initiative, NYC Dept of Health and Mental Hygiene, 2003

*35% decrease in pediatric admissions btw 1997-2000
*38% decrease in pediatric admissions btw 1997-2000
Asthma triggers

- Allergens
 - Small proteins (2-60 microns)
 - Highly soluble
 - Inhaled in dessicated particles (pollen grains, mite feces)
 - easily elute from the particle
 - diffuse into respiratory mucosa
 - Enzymatically active (eg. proteases)
 - Low dose favors activation of IL-4 producing CD4 T cells
 - Seasonal patterns of pollination:
 - Spring-trees
 - Summer-grass
 - Fall-ragweed

Viruses

Hospital admissions correlate with virus isolation peaks and school terms

- URTs
- Total pediatric and adult hospitalizations
- School holidays

- Viruses detected in adults hospitalized with asthma
 - Influenza A: 54%
 - Influenza B: 6%
 - RSV: 3%
 - Adenovirus: 6%
 - Rhinovirus: 28%
 - Herpes: 3%

- N=33 organisms isolated

Immunological mechanisms:

- Allergic sensitization

- Immediate reaction
 - Mediator release
 - Eosinophil

- Late phase reaction
 - Mucus production

Immunological mechanisms: Reexposure
IgE-dependent release of inflammatory mediators

- Immediate: Granule contents
 - Histamine
 - TNF- α
 - Proteases
 - Heparin
- Over minutes: Lipid mediators
 - Prostaglandins
 - Leukotrienes
- Over hours: Cytokine production
 - IL-4
 - IL-13

Mediating risk

- Genetic predisposition
 - FcεRI, HLA, IL-4, CD14, B2AR
- Environment
 - allergic sensitization, fewer sibs, excessive hygiene, prenatal antibiotic exposure, vaccination, farm
 - Prenatal exposures
 - parent of origin effect for IgE, asthma; maternal atopy, maternal parity, ETS
 - Prenatal diet
 - increased methyl donors; reduced zinc, vitamin E, vitamin D, zinc; Mediterranean diet

Hygiene hypothesis

Increased cleanliness in 20th century Western Society has led to greater number of allergic (Th2 skewed) individuals.

Protective exposures offered as evidence of the ‘Hygiene hypothesis’

- Older siblings
- Lack of vaccination
- Early life respiratory infections
- Parasitic infection
- Day care attendance
- Gut microflora
- Animal exposure
- Consumption of unpasteurized milk
- Exposure to a barn in the 1st year of life
- Bacterial endotoxin

Protective effect of early day care and older siblings

Children who had ≥2 older siblings or attended day care during first 6 mo of life had increased risk of wheeze early in life but decreased risk later.

Protective effect of respiratory infections in infancy

- ≥2 episodes of "common cold" before age 1 yr decrease risk of asthma by age 7 by ~50%
- Other viral infections also protective
 - herpes
 - varicella
 - measles
 - LRI with wheeze in the first 3 years of life increases risk of asthma

Special groups
Occupational asthma

- "Variable airway narrowing causally related to exposure in the working environment to airborne dusts, gases, vapors or fumes"
- Causes worsening in up to 15% of asthmatics
- Causes 2-5% of de novo asthma cases in U.S.
- Failure to diagnose and manage promptly can lead to long-term, irreversible sequelae

Two types

1. Production of specific IgE directed a’g:
 - HMW natural allergens-flour, latex
 - Allergens covalently bound to LMW chemicals
 - Eg: diisocyanates, red cedar wood
2. Irritant-induced (RADS):
 - Injury to respiratory epithelium following toxic exposure exposes vagal receptors or C fibers, resulting in increased AR.
 - Eg: sulfur dioxide

Features

- Latent period of immunologic sensitization
- Low levels cause symptoms
- Sensitivity increases with continued exposure
- If IgE mediated, correlation with skin tests, in vivo tests
- Usually only in minority of workers

Exercise-induced asthma

- Self-limited syndrome of cough and/or wheezing, chest pain or chest tightness developing within 30 minutes of 2-8 minutes of continuous exercise.
- Often reflection of the underlying asthma condition

Olympic gold medalists with asthma

And the entire 1988 U.S. water-polo team
DT, JJK, AS, TD
Frequency

<table>
<thead>
<tr>
<th></th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population</td>
<td>3-13</td>
</tr>
<tr>
<td>Asthmatics</td>
<td>90</td>
</tr>
<tr>
<td>Army recruits</td>
<td>7</td>
</tr>
<tr>
<td>Competitive athletes</td>
<td>10</td>
</tr>
<tr>
<td>Elite swimmers</td>
<td>21</td>
</tr>
<tr>
<td>Elite winter sports athletes</td>
<td>50</td>
</tr>
</tbody>
</table>

Pathogenesis

- Thermal hypothesis
 - cold air ↑ blood flow to bronchial circulation → airway obstruction
- Osmotic hypothesis
 - cold dry air → in loss of fluid from the airway → hyperosmotic state → mast cell degranulation
 - releases bronchoconstrictive mediators
 - increases bronchovascular permeability

Sports specific factors

- Skaters: Ice resurfacing machines-emit PM's
- Swimmers: inhaled chlorine (that produces nitrogen trichloride) can cause airway inflammation and lung epithelial hyperpermeability

Effect of pregnancy on asthma

- 1/3 improve; 1/3 unchanged; 1/3 deteriorate
- Pattern repeats in successive pregnancies
- 10-20% have asthma Sxs during L & D
- Usually return to their pre-pregnancy asthma status by 3 months postpartum

Pregnancy (like asthma) Th2 state?

- Postulated: skewing away from the production of Th1 cytokines and towards the production of Th2 may help the survival of the fetus and reduce the risk for pre eclampsia

Th1 chemokine ratio (IP10/eotaxin) declines during pregnancy; eotaxin rises

<table>
<thead>
<tr>
<th></th>
<th>Mother</th>
<th>Newborn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pregnancy</td>
<td>Postpartum</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>4.03±0.85 (n=35)</td>
<td>2.54±0.43 (n=34)</td>
</tr>
<tr>
<td>IL-4</td>
<td>0.29±0.11 (n=33)</td>
<td>0.64±0.28 (n=38)</td>
</tr>
<tr>
<td>IP-10</td>
<td>6.6±1.0 (n=38)</td>
<td>19.2±2.04 (n=39)</td>
</tr>
<tr>
<td>eotaxin</td>
<td>59±3.16 (n=51)</td>
<td>56.7±4.3 (n=51)</td>
</tr>
<tr>
<td>IFN-γ/IL-4</td>
<td>56.5±3.1 (n=11)</td>
<td>56.7±2.1 (n=11)</td>
</tr>
<tr>
<td>IP10/eotaxin</td>
<td>3.3±1.5</td>
<td>1.4±0.3</td>
</tr>
</tbody>
</table>

McFadden, CR. Allergy Principles and Practice (6th). 2006
Steroid insensitive asthma

- 10% of asthmatics have severe asthma
- 0.1 to 1% of all asthmatics have steroid insensitive asthma
- NOT a major subgroup

Immunopathogenesis?

- Extension of mild/mod asthma with ongoing Th2 inflammation?
- “Different” inflammatory process featuring neutrophils?
- Structurally remodeled airways leading to fixed/irreversible obstruction?
- Altered distribution of inflammation and/or structural abnormalities?

Targeted treatment of asthma

Updated NAEPP guidelines: 6 steps

- Step 1 - short acting inhaled beta agonist prn
- Step 2 - Low dose inhaled corticosteroid (ICS), or leukotriene antagonist, or cromolyn, or theophylline
- Step 3 - Medium dose ICS or low dose ICS plus inhaled long acting beta agonist (LABA)
- Step 4 - Medium dose ICS plus LABA
- Step 5 - High dose ICS plus LABA - consider omalizumab (anti-IgE) therapy
- Step 6 - Oral corticosteroid

NAEPP guidelines: pregnancy*

- Monthly objective measures of lung fn; spirometry at 1st visit
- Avoidance of triggers-continue, but don’t begin IT
- Patient education-recognizing signs, importance of pharmacological Rx
- Pharmacological Rx*
 - Minimal human data on leukotriene antagonists; reassuring animal data submitted to FDA; alternate recommend for mod asthma

NAEPP guidelines: pregnancy*

- Treat asthma as aggressively in pregnant women as in nonpregnant women
 - Pregnant women with persistent asthma need daily controller medication.
 - ICS (budesonide) is first-line therapy for persistent asthma.
- Adequately controlled asthma does not increase the risk of perinatal mortality, morbidity.

Updated NAEPP 2004
Inhaled budesonide does not increase rate of congenital malformations

Omalizumab complexes bind free IgE and interrupts allergic cascade

Binding of IgE to high-affinity (FceRI) receptor

IgE receptors downregulated

High-risk patients
- Significant add-on therapy
 - Halves the number of asthma exacerbations
 - Reduces the likelihood of re-hospitalization
- Consistent reduction in exacerbation rates across all FEV1 severity groups
- Greater improvements in lung function, asthma symptoms, and asthma-specific quality of life

Refractory Asthma: Types
- Severe despite appropriate therapy, vs
- Under-treated because of adherence or other problems
- "brittle" vs. nonbrittle
Refractory asthma: workshop consensus for typical clinical features

Major Characteristics

In order to achieve control to a level of mild-moderate persistent asthma:

1. Treatment with continuous or near continuous (≥ 50% of year) oral corticosteroids
2. Requirement for treatment with high-dose inhaled corticosteroids:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (µg/d)</th>
<th>Dose (puffs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Beclomethasone dipropionate ≥ 1,260</td>
<td>≥ 40 puffs</td>
<td>(42 µg/inhalation)</td>
</tr>
<tr>
<td>b. Budesonide</td>
<td>≥ 1,200</td>
<td>≥ 6 puffs</td>
</tr>
<tr>
<td>c. Flunisolide</td>
<td>≥ 2,000</td>
<td>≥ 8 puffs</td>
</tr>
<tr>
<td>d. Fluticasone propionate</td>
<td>≥ 880</td>
<td>≥ 8 puffs (110 µg), ≥ 4 puffs (220 µg)</td>
</tr>
<tr>
<td>e. Triamcinolone acetonide</td>
<td>≥ 2,000</td>
<td>≥ 20 puffs</td>
</tr>
</tbody>
</table>

Minor Characteristics

1. Requirement for daily treatment with a controller medication in addition to inhaled corticosteroids, e.g., long-acting β-agonist, theophylline, or leukotriene antagonist
2. Asthma symptoms requiring short-acting β-agonist use on a daily or near daily basis
3. Persistent airway obstruction (FEV1 < 80% predicted; diurnal PEF variability > 20%)
4. One or more urgent care visits for asthma per year
5. Three or more oral steroid “bursts” per year
6. Prompt deterioration with 25% reduction in oral or inhaled corticosteroid dose
7. Near fatal asthma event in the past

* Requires that other conditions have been excluded, exacerbating factors treated, and patient felt to be generally adherent.

Definition of refractory asthma requires one or both major criteria and two minor criteria.

Refractory asthma: differential diagnosis

- Mild asthma with another functional breathing problem
- Stridor
- Persistent isolated cough
- Prolonged wheezing from bronchiolitis (infants)
- COPD
- LV Dysfunction
- VC Dysfunction (32% coexistent asthma)

Is it ONLY refractory asthma? exacerbating factors

- GER (34-80%)
- Upper airway disease, nasal polyposis
- Psychosocial factors
 - Meds prescribed for depression, conflict, psychiatric illness assoc with incr risk of asthma death
 (Campbell et al. Thorax, 50: 254, 1995)
- Poor adherence
 - Reported compliance with ICS 30 (adolescents)-55%
 (Garcia et al Allergy 58:114, 2003)
- Sleep apnea

PO steroids

- If pt does not respond to prednisone/ methylprednisolone 20 mg qod, consider:
 - incomplete steroid absorption
 - failure to convert to active form (prednisolone), or
 - rapid elimination

- Drug interactions
 - rifampin, phenytoin, carbamazepine, phenobarbital

Compliance

- Prescriptions collected?
 - 1/6 parents filled all asthma prescriptions
 - 72% women, 68% men possess prescribed ICS
 - 30% women and 24% men possess peak flow meters
- Prescriptions used?
 - 50% women, 58% men use prescribed ICS daily
- Parents supervising?

Conclusion

- Asthma markedly heterogeneous disease in terms of:
 - Natural history
 - Phenotype
 - Pathogenesis
- Such heterogeneity relevant to its clinical management