2007 Estimated US Cancer Cases*

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>766,860</td>
<td>678,060</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
<td>9%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Kidney</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>All Other Sites</td>
<td>19%</td>
<td>21%</td>
</tr>
</tbody>
</table>

*Includes basal and squamous cell skin cancers and in-situ carcinomas except urinary bladder.

2007 Estimated US Cancer Deaths*

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>289,550</td>
<td>270,100</td>
</tr>
<tr>
<td>Prostate</td>
<td>29%</td>
<td>31%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Kidney</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>All other sites</td>
<td>24%</td>
<td>23%</td>
</tr>
</tbody>
</table>

*Includes basal and squamous cell skin cancers and in-situ carcinomas except urinary bladder.

Five-year Cancer Survival Rates (%)

US 1974-1998

![Five-year Cancer Survival Rates Graph](image)

Source: CA Cancer J Clin 2000;50:7-33

Lung Cancer Risks

- Cigarette Smoking
 - Environmental Tobacco Smoke
- Other Carcinogens
 - Asbestos, Arsenic, Radon,
 - Bis(chloromethyl) ether, Chromium, Foundry fumes, nickel, mustard gas, coke oven emissions
- Air Pollution (foundries, diesel exhaust)
- Family History
- Diet (Vitamins A,C, E and selenium "protective")

![Cancer Death Rates Graph](image)

Source: SEER
Smoking Prevalence Rates, US

![Graph showing smoking prevalence rates for US males and females from 1955 to 1995.](image)

Garfinkel, Prev Med 26:447

Percentage of High School Students Who Reported Current Cigarette Smoking

![Graph showing percentage of high school students who reported current cigarette smoking from 1991 to 1999.](image)

Youth Behavior Survey, MMWR 2000; 49

Risk of lung cancer, men vs. women

<table>
<thead>
<tr>
<th>Pack-years</th>
<th>MALES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1-19</td>
<td>2.4 (1.4-4.1)</td>
<td>6.8 (4.1-11.4)</td>
</tr>
<tr>
<td>20-39</td>
<td>5.6 (3.6-8.7)</td>
<td>11.2 (7.5-16.8)</td>
</tr>
<tr>
<td>40-49</td>
<td>11.6 (7.7-17.6)</td>
<td>21.4 (14.3-32.3)</td>
</tr>
<tr>
<td>>50</td>
<td>13.8 (9.2-20.9)</td>
<td>32.7 (19.0-56.2)</td>
</tr>
</tbody>
</table>

Relative risk for developing lung cancer is 1.25 for women for any “dose” of tobacco

Zang, JNCI 88:183, 1996

Presentation of Lung Cancer

- **Local Symptoms**
 - Cough
 - Dyspnea
 - Hemoptysis
 - Chest Pain
 - SVC Syndrome
 - Wheezing

- **Systemic Symptoms**
 - Constitutional
 - Skeletal
 - Clubbing
 - Hypertrophic Pulmonary Osteoarthropathy
 - Endocrine
 - SIADH (sclc)
 - Hypercalcemia (squamous)
 - Cushings Syndrome (sclc)
 - Neurologic
 - Horner Syndrome
 - Eaton-Lambert syndrome (sclc)
 - Vascular
 - Thrombopilebitis, DIC

Differential Diagnosis

- **Benign**
 - Granuloma
 - Hamartoma

- **Malignant**
 - Metastasis
 - Primary Lung Ca
 - Small Cell
 - Carcinoid
 - Non-small Cell
 - Adenocarcinoma
 - Squamous
 - Large Cell

Pathologic diagnosis:

- Transbronchial biopsy
- Transthoracic needle biopsy
- Cytology
 - Bronchial brushing
 - Lavage
 - Aspiration (transthoracic or transbronchial)
- Thoracotomy/VATS
Lung tumors - Benign

- The majority of pulmonary neoplasms are malignant
- Benign tumors/lesions
 - Hamartoma (most common)
 - Mesenchymal- leiomyoma, lipoma, chondroma (all unusual)
 - Alveolar adenoma (rare)

Hamartoma

Likely a misnomer as these are probably true benign neoplasms, with common chromosomal abnormality (6p21 or 12q14-15).

Malignant tumors - classification

<table>
<thead>
<tr>
<th>Lung Tumor Classification</th>
<th>Small cell carcinoma</th>
<th>Non small cell carcinoma</th>
<th>Carcinoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant epithelial tumors</td>
<td>Adenocarcinoma</td>
<td>Squamous Ca</td>
<td>Atypical carcinoids</td>
</tr>
<tr>
<td>Bronchioalveolar</td>
<td>Various subtypes</td>
<td>Various subtypes</td>
<td>Various subtypes</td>
</tr>
</tbody>
</table>

Small cell carcinoma

- Usually hilar/ central tumor
- The majority have extrapulmonary spread at time of presentation.
- Only 5% present as early stage disease.
- Critical divide between small cell and non-small cell carcinoma
 - Small cell carcinoma staged differently, treated with chemoradiation not surgery.

Small cell carcinoma

- High grade tumor
- Small cells with high nuclear to cytoplasmic ratio
- Nuclear molding with stippled, salt and pepper chromatin
- Frequent mitosis and apoptosis
- “Crush” artifact - very fragile cells
- Neuroendocrine differentiation can be demonstrated by electron microscopy and immunohistochemistry (few neurosecretory granules due to poor differentiation)
Small Cell

Atypical adenomatous hyperplasia - adenocarcinoma precursor

- Focal, 5.0 mm or less, with defined borders
- Alveoli lined by cuboidal to low columnar cells with variable atypia
- Alveolar walls may be slightly thickened
- Non-mucinous
- Clinical significance unclear (?time to progression to carcinoma)

Adenocarcinoma

- Most often a peripheral tumor
- Many are near pleura and cause pleural puckering.
- Cut surface can be mucoid or firm, depending on degree of fibrosis and mucin production
- Small tumors can be associated with lymph node and distant metastasis.
Adenocarcinoma

- Histologic varieties are multiple, including solid, acinar, papillary, mucinous types even within the same tumor
- Rarer types include signet ring morphology
- Differentiation can recapitulate goblet cell, Clara cell or type II pneumocyte differentiation
- Bronchial glands can produce a distinct subtype mimicking salivary gland type tumors
 - These unusual tumors are central and in younger patients

Adenocarcinoma - Bronchioloalveolar

- Distinct morphologic and clinical variant
- Grows along pre-existing alveoli and terminal bronchioles without stromal invasion
- Grossly can form a nodule, but can also produce diffuse disease mimicking pneumonia
- Can be mucinous or non-mucinous.
- Often multifocal

[Images of adenocarcinoma and adenocarcinoma-BAC features]
Are these observations relevant?

- EGFR mutation and amplification correlates with response to EGFR targeted agents (tyrosine kinase inhibitors gefitinib and erlotinib).
 - This subgroup of patients are also more likely to be women, non-smokers, and of Asian descent but not exclusively so.
- Activating K-ras mutations indicate resistance to these agents (about 30% of lung adenocarcinomas)
- Few, if any, lung adenocarcinomas have both activating K-ras and EGFR mutations in the same tumor.
Squamous precursors

• Squamous metaplasia, dysplasia and carcinoma in situ in lung progresses in a sequence similar to the changes described in the head and neck and cervix.
• Koilocytosis is not common; this HPV viral cytopathic change is seen in papillomatosis of larynx and trachea (HPV 6/11)

Squamous carcinoma

• Usually of bronchogenic origin; however can also arise from peripheral areas of squamous metaplasia
• Frequently have central necrosis
• Faster doubling time than adenocarcinoma; often larger at presentation
• Metastasis in relation to tumor size may occur later than adenocarcinoma

Large cell carcinoma

• This subtype shows no differentiation towards either squamous or adenocarcinoma
• Aggressive tumors with poor prognosis
• If subjected to ultrastructural examination, many of these tumors show either glandular or squamous differentiation.
• Nevertheless, these tumors are separated out because of their high grade and poor prognosis
Carcinoids

- Malignant neoplasm of neuroendocrine cell origin
- Can be central or peripheral; central lesions can cause bronchial obstruction
- Project into bronchial lumen but often have intact mucosa above them (grow under the mucosa)
- Typical carcinoids are low grade malignancies; atypical carcinoids (mitoses and necrosis) are intermediate grade when compared to non-small cell carcinomas

Endobronchial carcinoid

Carcinoids

- Histologic features
 - Nest and cords surrounded by delicate stroma
 - Uniform cells with salt and pepper chromatin
 - Neurosecretory granules are abundant and easily demonstrated by electron microscopy or immunohistochemistry (well differentiated tumors)

Metastatic Carcinoma

- The lung is a frequent site of metastatic tumor, both from extrapulmonary and intrapulmonary primaries.
- In autopsy series, between 20 and 50% of patients that expire from extra-pulmonary primaries have lung metastasis.
- Melanoma, sarcomas, renal cell carcinoma, germ cell tumors, breast carcinoma as well as carcinomas of bladder, larynx, thyroid and prostate
Lung Cancer Staging

- Small Cell Carcinoma
 - Limited: confined to hemithorax
 - Extensive
- Non-small Cell Carcinoma
 - T, N, M: Clinical Stage 1-4

Therapy - Non-small Cell Lung Cancer

- Stage I, II
 - Lobectomy + adjuvant chemotherapy
- Stage IIIa
 - Neoadjuvant chemotherapy, radiation, surgery
- Stage IIIb
 - Chemotherapy + radiation
- Stage IV
 - Chemotherapy

Therapy - small cell

- Limited
 - Chemotherapy + Radiation
- Extensive
 - Chemotherapy

CT Screening
Assessment of Interval Growth

Benign or Malignant?
Gene Expression Signatures in Biopsy Specimens of Lung Cancer

Gene expression signatures can be used to predict the risk of cancer death. High-risk gene expression profiles include MYC (gene transcription regulation), TGFβ1 (growth factor binding), FHL2 (oncogenesis-β-catenin), CCNB1 (G2/M transition), and LOXL2 (scavenger receptor). Low-risk gene expression profiles include HLADPB1 (class II MHC) and SELENBP1 (selenium binding).

Biopsy: Prognosis

<table>
<thead>
<tr>
<th>High Risk for Cancer Death</th>
<th>Low Risk</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYC</td>
<td>HLADPB1</td>
<td>Gene transcription regulation</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>SELENBP1</td>
<td>Growth factor binding</td>
</tr>
<tr>
<td>FHL2</td>
<td></td>
<td>Oncogenesis-β-catenin</td>
</tr>
<tr>
<td>CCNB1</td>
<td></td>
<td>G2/M transition</td>
</tr>
<tr>
<td>LOXL2</td>
<td></td>
<td>Scavenger receptor</td>
</tr>
</tbody>
</table>

Images of gene expression profiles are shown.

Am J Respiratory and Critical Care Medicine 170: 167